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Petra Š́ımová7, Carlo Ricotta11, Sonia Silvestri12, Enrico Tordoni13,9

Michele Torresani1, Giorgio Vacchiano14, Piero Zannini1, and10

Duccio Rocchini1,711

1BIOME Lab, Department of Biological, Geological and12

Environmental Sciences, Alma Mater Studiorum University of13

Bologna, via Irnerio 42, 40126 Bologna, Italy14

2Evolutionary Ecology and Genetics Group, Earth & Life15

Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium16

3CR CNRS, EDYSAN (UMR 7058 CNRS-UPJV) – Université de17
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Abstract46

Spatio-ecological heterogeneity is strongly linked to many ecological47

processes and functions such as plant species diversity patterns and change,48

metapopulation dynamics, and gene flow. Remote sensing is particularly49

useful for measuring spatial heterogeneity of ecosystems over wide regions50

with repeated measurements in space and time. Besides, developing free51

and open source algorithms for ecological modelling from space is vital to52

allow to prove workflows of analysis reproducible. From this point of view,53

NASA developed programs like the Surface Biology and Geology (SBG)54

to support the development of algorithms for exploiting spaceborne re-55

motely sensed data to provide a relatively fast but accurate estimate of56

ecological properties in vast areas over time. Most of the indices to mea-57

sure heterogeneity from space are point descriptors : they catch only part58

of the whole heterogeneity spectrum. Under the SBG umbrella, in this59

paper we provide a new R function part of the rasterdiv R package which60

allows to calculate spatio-ecological heterogeneity and its variation over61

time by considering all its possible facets. The new function was tested on62

two different case studies, on multi- and hyperspectral images, proving to63

be an effective tool to measure heterogeneity and detect its changes over64

time.65

Keywords— biodiversity, ecological informatics, modelling, remote sensing, satel-66

lite imagery67

1 Introduction68

The concept of spatiotemporal heterogeneity is crucial in ecological modelling to link69

spatial patterns to the generating processes and to the functional networking among70

organisms (Borcard et al., 1992). In ecological research, the search for new methods71

underlying spatiotemporal patterns in ecosystem heterogeneity has been a recurring72

theme (Rocchini and Ricotta, 2007; Atluri et al., 2018). Spatio-ecological hetero-73
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geneity, in this paper considered as the degree of non-uniformity in vegetation, land74

cover, and physical factors (soil, topography, microclimate and topoclimate; (Stein et75

al., 2014), has been proven to be strongly linked to many ecological processes and76

functions such as plant species diversity patterns and change (Rocchini et al., 2018),77

metapopulation dynamics (Fahrig, 2007), and gene flow (Lozier et al., 2013). Indeed,78

an increase of spatial heterogeneity means an increase in the availability of ecological79

niches, provision of refuges at relatively short distances and opportunities for spatial80

isolation and local adaptation (Stein et al., 2014). As a consequence, species coexis-81

tence, persistence and diversification are generally in strict relation with the degree of82

environmental heterogeneity available within the landscape (Stein et al., 2014; Tews83

et al., 2004). The development of new methods for measuring spatio-ecological het-84

erogeneity is also fundamental to make estimations of its change in time in order to85

improve conservation planning (Skidmore et al., 2021).86

In this context, NASA developed programs like the Global Ecosystem Dynamics87

Investigation (GEDI, https://gedi.umd.edu/) or the Surface Biology and Geology88

(SBG) mission (https://science.nasa.gov/earth-science/decadal-sbg) exploit-89

ing spaceborne remotely sensed data to provide a relatively fast but accurate estimate90

of spatio-ecological heterogeneity in vast areas over time. In fact, spectral heterogene-91

ity of an optical image - associated with the reflectance values of the pixels - can be92

a proxy of the spatio-ecological heterogeneity (Rocchini, 2007). Hence, the variation93

of spatio-ecological heterogeneity in space and time (e.g., phenological cycles) can be94

effectively inferred using remote sensing (Schneider et al., 2017).95

Therefore, the measure of ecosystem heterogeneity over time from satellite through96

Free and Open Source Software and algorithms allows robust, reproducible and stan-97

dardized estimates of ecosystem patterns and processes (Rocchini and Neteler, 2012).98

Also, its use brings many advantages: availability, transparency and shareability. In99

this context, the R platform is one of the most used statistical and computational100

environment in ecology, partially thanks to the continuous development of relevant101

packages. In particular, the rasterdiv package (Marcantonio et al. , 2021; Rocchini102

et al., 2021; Thouverai et al., 2021) allows to calculate a plethora of different indices103
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to measure spatio-ecological heterogeneity from space.104

Most of the algorithms have been related to Information Theory relying on abundance-105

based metrics, starting from Shannon’s index (Shannon, 1949) (see section 2). How-106

ever, some information about the spectral distance among pixel reflectance values107

might be lost if not considered in the calculation (Rocchini et al., 2017). Currently,108

the candidate for solving the problem is Rao’s Quadratic Entropy index (hereafter109

Rao’s Q) (Rao, 1982): this index, besides the relative abundance of pixel values in110

a given moving window or polygonal area, incorporates also their spectral distances111

(section 2). Both Shannon and Rao’s Q indices are point descriptors of heterogene-112

ity, namely they can only show part of the whole heterogeneity spectrum. Recently113

Rocchini et al. (2021) proposed an implementation of the Rao’s Q index by param-114

eterizing the original formula, and allowing the whole continuum of heterogeneity to115

be measured thanks to Rao’s Q continuous profiles (see section 2).116

This paper aims to show how to make proper use of the Rao’s continuum hetero-117

geneity variation profile by proposing a new R function – integrated into the rasterdiv118

R package (Marcantonio et al. , 2021) - which calculates AUC, the area under the119

curve formed by applying the parametric Rao’s Q index (see section 2). Two case stud-120

ies on multi- and hyperspectral satellite images are also provided in order to verify if121

the new metric proposed could be an effective tool for the study of spatio-ecological122

heterogeneity.123

2 The algorithm124

2.1 The theory125

Algorithms that aim to measure environmental heterogeneity through remote sensing126

data can rely on the moving window technique, which divides remotely sensed imagery127

into user-defined squares (windows) to derive measures of heterogeneity. Examples are128

included in the rasterdiv R package (Rocchini et al., 2021). One of the most used129
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metrics included in the package is the Shannon entropy index H (Shannon, 1949):130

H = −
N
∑

i=1

pi ln pi (1)

where the relative abundance of every pixel reflectance value calculated as the ratio131

between the actual value of the pixel i ∈ {1, ..., N} and the sum of the pixel values of132

the moving window (pi) in an image of N pixels is considered. It is usally calculated133

of one layer images, such as a vegetation index or the first axis of a PCA. However,134

Shannon’s H does not consider the spectral distances among pixel reflectance values,135

overestimating the heterogeneity of homogeneous surfaces (Rocchini et al., 2017). For136

instance, when using Shannon’s H, spectral values differing by a few decimals will137

be treated the same as spectral values differing by several order of magnitudes. To138

overcome this issue, Rao’s Q index (Rao, 1982) can be used to include the pixel’s139

spectral distances in the calculation:140

Q =
N
∑

i=1

N
∑

j=1

dij × pi × pj (2)

where dij is the spectral distance between pixel i and pixel j and pi and pj are the141

relative abundances of the pixels i and j in an assemblage of N pixels. The spectral142

distance between pixels dij can be calculated over any number of layers and using any143

metric for the calculation of pairwise distances. For example, in the rasterdiv pack-144

age, the Rao function permits the calculation of Rao’s Q chosing from ”euclidean”,145

”manhattan”, ”canberra”, ”minkowski” and ”mahalanobis” as the type of distance146

calculated (Marcantonio et al. , 2021). Both Shannon’s H and Rao’s Q are point de-147

scriptors of heterogeneity, showing only one part of its potential spectrum. Therefore,148

the use of generalized entropies, where one single formula represents a parameter-149

ized version of an index, provides a continuum of heterogeneity metrics reflecting all150

the characteristics of the heterogeneity spectrum. Rocchini et al. (2021) presented a151

parametric version of Rao’s Q allowing the characterisation of the dimensionality of152
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heterogeneity in different ecosystems:153

Qα =

(

N
∑

i,j=1

ωijd
α
ij

)
1

α

(3)

where dij is the spectral distance between pixel i and pixel j and ωij is the combined154

probability (1/N2) of extracting pixels i and j in this order in an image of N pixels.155

In other words, parametric Rao’s Q is a generalized mean that measures the expected156

distance between two randomly chosen pixels regulated by the parameter α. The α157

parameter provides a continuum of potential diversity indices by regulating the weight158

of dij with the highest values obtaining different types of means as it is increasing159

([α → 0] ⇒ geometric, [α = 1] ⇒ arithmetic, [α = 2] ⇒ quadratic, [α = 3] ⇒ cubic,160

and so on till [α→∞]⇒ maxd).161

In this paper, we propose to calculate the area under the curve (AUC) constructed162

by applying the index parametric Rao’s Q over a sequence of α values. We want to163

verify if AUC can be used to quantify the width of the diversity spectrum calculated164

with parametric Q for each pixel, resulting in an image that can be exploited to monitor165

the change in the heterogeneity spectrum over time for a selected area.166

2.2 The R function167

The function rasterdiv::accRao() exploits the function rasterdiv::paRao() to de-168

fine the values of the parametric Rao’s Q using a vector of alphas decided by the user.169

Accordingly, the values of parametric Rao’s Q are calculated building a moving win-170

dow around every pixel of the remote sensing image for every alpha selected. Then, the171

integral of the curve formed by the values of the parametric Rao’s Q index obtained172

for every pixel is calculated.173

3 Examples174

In this section, we present one theoretical examples and two case studies for the new R175

function proposed (accRao()). Specifically, AUC was calculated for one layer, multi-176
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and hyperspectral satellite images of areas afflicted by a sudden event that changed the177

spatio-ecological heterogeneity of the area. We choose two images per case study of two178

different moments in time and calculated the difference between the two, highlighting179

the increase in heterogeneity.180

3.1 A theoretical example181

In this section, we will show how to use the function accRao() from the rasterdiv182

package to calculate the accumulation function (integral) of Rao values obtained using183

a range of alpha-values. We used a raster for the global average NDVI rescaled at 8-bit184

available from rasterdiv. This raster was first cropped on the islands of Sardinia and185

Corsica. In order to simulate the effects of an ecological perturbation, for example186

widespread drought, we created a new raster with perturbed NDVI values for these187

two islands. Pixels with NDVI higher than 150 were decreased using values from a188

normal distribution centered on 50 with a standard deviation of 5. Then, we applied189

accRao() both on the original and simulated raster by using alphas ranging from 1 to190

10:191
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RaoAUC.before ← accRao(

alphas = 1:10, #range of alphas

x = ndvi.before , #raster layer

dist_m = "euclidean", #method for the

#calculation of the

#spectral distance

window = 3, #dimension of the moving window

method = "classic", #specifies if the function

#is applied on a single

#layer or on a

#multidimensional system

rasterAUC = TRUE , #specifies if the output

#will be a raster layer or

#a matrix

na.tolerance = 0.4, #proportion of NA values

#tolerated

np = 1 #number of cores which will be spawned

)

RaoAUC.after ← accRao(alphas=1:10, x=ndvi.after ,

dist_m="euclidean", window=3, method="classic",

rasterAUC=TRUE , na.tolerance=0.4, np=1)

192
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Afterwards, the difference between the two rasters, before and after the simulated193

perturbation, was calculated (Figure 1). Also, the average parametric Rao of the194

images in Figure 1 was calculated for every α value, and the resulting curves are195

showed in Figure 2.196

accRao() function derives the value of parametric Rao for each pixel using a moving197

window algorithm. To illustrate how this methodology works, we applied paRao() on198

a single group of neighbor pixels, which represents a moving window, from the two199

NDVI rasters and with alphas ranging from 1 to 10 as follows:200
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#Selection of the 3x3 window

ndvi.pix.b ← ndvi.before[41:43, 21:23,drop=FALSE]

ndvi.pix.a ← ndvi.after[41:43, 21:23,drop=FALSE]

#Set the alpha interval

alphas = 1:10

#Set the number of pixels in the selected window

N = 3^2

#Function to calculate paRao over the set alphas

RaoFx ← function(alpha ,N,D) {

( sum((1/(N^4)) * D^alpha )*2)^(1/alpha)

}

#Calculation of paRao before

rao.b ← sapply(alphas , function(a) {

RaoFx(alpha=a, N=N,D=as.vector(ndvi.pix.b))})

#Calculation of paRao after

rao.a ← sapply(alphas , function(a) {

RaoFx(alpha=a, N=N, D=as.vector(ndvi.pix.a))})

201

From the values obtained (a parametric value for each alpha), the area under the202

curve was calculated integrating the results (Figure 3):203
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#Calculation of AUC before

RaoAUC.bf ← approxfun(x = alphas , y = rao.b)

RaoAUC.b ← integrate(RaoAUC.bf , lower = 1,

upper = 10, subdivisions = 500)

#Calculation of AUC after

RaoAUC.af ← approxfun(x = alphas , y = rao.a)

RaoAUC.a ← integrate(RaoAUC.af , lower = 1,

upper = 10, subdivisions = 500)

204

3.2 Empirical examples205

In this section, the accRao() function is tested on two real-world case studies by206

comparing remotely sensed images before and after a perturbation event. AUC is207

calculated on multi- and hyperspectral images, exploiting the information that every208

band holds to estimate the spatio-ecological heterogeneity.209

3.2.1 Example 1: Fire spread in the Kangaroo island (Australia)210

This section focuses on the major fire-affected area of Kangaroo Island in January211

2020, in particular on Flinders Chase NP and the associated Ravine Des Casoars212

Wilderness Protection Area. Two cloudless images from Copernicus Sentinel-2 (https:213

//scihub.copernicus.eu/) with a spatial resolution of 10m before (January 2019) and214

after (January 2021) were compared (Figure 4). The accRao() function was applied on215

the 2 multispectral images (Red, Green, Blue and NIR bands) using a moving window216

of 9×9 pixels and the parameter alpha was set to a range of 1 to 5:217
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#accRao () function

accRao(alphas = 1:5, x = kanga_multi ,

dist_m = "euclidean", window = 9,

method = "multidimension", rasterAUC = TRUE ,

na.tolerance = 0.9, np = 1)

218

Subsequently, the difference between the obtained AUC images was calculated,219

with positive values meaning an increase in spatio-ecological heterogeneity (Figure220

4). In this case, the AUC of Rao’s Q profiles succeeded to highlight areas where221

the perturbation (fire) event caused an increase of spatial heterogeneity of vegetation222

which was more homogeneous (continuous woodland cover) before the perturbation.223

3.2.2 Example 2: Post fire in Santa Barbara, California224

For the last empirical examples two hyperspectral images of a postfire scene in Santa225

Barbara (California) were downloaded from AVIRIS https://aviris.jpl.nasa.gov/226

platform. The first image is from June 2009, the second from June 2011 in order to227

visualize the recovery of the vegetation after the fire event (see Figure 5). The accRao()228

function was applied over all the 224 bands of the two images using a moving window229

of 9×9 pixels and setting the α parameter to a range of one to 5:230

#accRao () function

accRao(alphas = 1:5, x = santabarbara_hyper ,

dist_m = "euclidean", window = 9,

method = "multidimension", rasterAUC = TRUE ,

na.tolerance = 0.9, np = 1)

231

Subsequently, the difference between the obtained AUC images was calculated as in232
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the previous examples (Figure 6). The difference between the obtained AUC highlights233

subtle changes of spatio-ecolocical heterogeneity in the studied area between 2009 and234

2011.235

4 Discussion236

The study of landscape structure has been steadily growing in recent years (e.g.,237

Lichstein et al., 2002; Saravia, 2015) with the development of several methodologies238

and approaches, which have been tested ecosystems and supported in the scientific239

literature (see Bar-Massada and Wood, 2014). In particular, the use and availability of240

remote sensing data have made it possible to assess specific heterogeneity patterns over241

various ecosystems, with increasing performance in terms of spectral/spatial/temporal242

characteristics, opening up new possibilities for exploring complex ecological processes.243

Using our algorithm, environmental heterogeneity is estimated by the range of244

spectral values associated to the spatial variability within a given habitat. Hence,245

environmental heterogeneity can be evaluated contiguously, from regional to conti-246

nental extents, according to the remote sensing data used and the spatial extent of247

the analysis. Among the heterogeneity metrics, parametric Rao’s Q adds a layer of248

information to classical estimates of heterogeneity from remotely sensed multispectral249

data. This index considers pairwise pixel spectral distance to separate areas with high250

richness but low evenness from those with low richness but high evenness (Rocchini et251

al., 2017).252

In addition, the parametric Rao’s Q can be calculated in a multivariate system253

such as a multi-temporal system, i.e. long time series, in order to improve the as-254

sessments and prediction of changes in spatio-ecological heterogeneity over space and255

time (Rugani and Rocchini, 2016). Also, by considering multiple bands, it has a256

higher capability to discern subtle diversity changes over the landscape (Torresani et257

al., 2019).258

In this paper, all the potential facets of heterogeneity were investigated by param-259

eterizing the Rao’s Q metric and calculating the area under the curve of continuous260
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entropy profiles. This would be particularly useful when dealing with multitemporal261

sets, with increases or decreases of heterogeneity provoked by different ecological pro-262

cesses like drought (subsection 3.1, see also Jiao et al., 2020) and fire (subsection 3.2.1,263

see also Chuvieco and Kasischke, 2007; subsection 3.2.2).264

The application of AUC on Rao’s Q in before / after ecological perturbation sce-265

narios can help pointing out areas with the highest difference in spectral heterogeneity,266

by considering the whole heterogeneity continuum. For example, subsection 3.2.2 of267

two postfire scenes shows the sensibility of the algorithm in highlight even subtle land-268

scape changes using multiple bands for the analysis. Heterogeneity of ecosystems is269

multifaceted in its very nature. As stressed by (Gorelick, 2011) there is no ”true het-270

erogeneity” measurement since important holistic aspects of ecosystems are inevitably271

lost once making use of single metrics. From this point of view, the proposed general-272

ized entropy, based on a parameterization of the Rao’s Q entropy (and its area under273

the curve) can help catching the multidimensionality of ecosystem heterogeneity com-274

ponents (Nakamura et al., 2020), avoiding the intrinsic fallacy of a single best index275

of true heterogeneity (Gorelick, 2011).276

Moreover, the Rao’s Q original formula directly takes into account the distance277

among values (pixel reflectances once applied to remote sensing imagery). This leads to278

the possibility of accounting for the turnover among reflectances, also known as beta-279

diversity in ecology (Rocchini et al., 2018). Since little consensus has been reached as280

to general measures of heterogeneity / beta-diversity measurement in literature (Koleff281

et al., 2003), the aforementioned use of a generalized metric like the parametric Rao’s282

Q helps detecting gradients in reflectance beta-diversity change (turnover) over space,283

otherwise hidden when relying on point descriptors of heterogeneity, i.e. single metrics284

like the commonly used Shannon and Simpson indices in remote sensing applications285

(Nagendra, 2002). In other words, while a wide range of approaches has been used to286

catch the variation of ecosystem properties, finding ways to generalize heterogeneity287

measurement could represent a consistent approach to describe heterogeneity patterns288

change in space and time (Haralick & Kelly , 1969).289

The use of a continuum of diversities as in the parametric Rao’s Q leads to the290
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understanding of hidden parts of the whole diversity of dimensionalities (Nakamura291

et al., 2020). Increasing alpha in Equation 3 will increase the weight of higher dis-292

tances among different values until reaching the maximum distance value possible293

(Rocchini et al., 2021). For this reason, spatio-ecological heterogeneity values of the294

parametric Rao’s Q increase with each alpha progressively added to the calculation295

constructing a curve for every moving window built around each pixel (Rocchini et296

al., 2021). Consequently, applying an integral, it is possible to calculate the area un-297

der every pixel’s window area curve obtaining a new spatio-ecological heterogeneity298

metric, AUC. Hence, the accRao() function can highlight the differences before and299

after an ecological perturbation both in the theoretical and in the empirical examples300

(Figures 1, 4 and 6) showing the change in the whole heterogeneity continuum and301

being able to detect both: (i) spatially wide heterogeneity change patterns, as in the302

Kangaroo Island’s fires example (see subsection 3.2.1), as well as (ii) spatially local-303

ized differences in space and time, as in the post fire in Santa Barbara example (see304

subsection 3.2.2).305

The three examples proposed in section 3, show the application of AUC on one306

layer (subsection 3.1), multispectral (subsection 3.2.1) and hyperspectral 3.2.2 satellite307

images. However, for the hyperspectral images it is difficult to address a cause for the308

heterogeneity change: because of the high number of bands exploited for the analysis309

we can’t know which ones weight more in the measure of the index. Analysis like the310

Principal Component Analysis (PCA) or correlation matrices can help to highlight311

the bands which give more contribution in the calculation of the spatio-ecological312

heterogeneity.313

Also, in the empirical case studies only a range of alpha between 1 and 5 was tested314

because of the high computational complexity of the function accRao() as it is now.315

We are actually working to speed up the algorithm, so it would be interesting in a316

future study to test different ranges of alpha. In this context, it would also be helpful317

the study of the influence of the number of bands and their resolution on the measure318

of AUC, as highlighted by the Santa Barbara subsection (see subsection 3.2.2).319

In conclusion, the integration over an alpha range is more convenient than having320
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to choose a single alpha level as the most representative level of diversity. This task321

is often complicated as there is no direct interpretation for the meaning of indexes322

calculated with different alphas. Here, we propose the way forward to re-conciliate323

the advantage of having a single metrics without the need of choosing a single alpha324

value.325

5 Conclusion326

In this paper, we provided a practical demonstration of the effectiveness of a method327

that can supply meauseres of generalized entropy at different spatial scales and in328

different contexts. Generalized means represent an effective tool to develop a uni-329

fying notation for a large family of parametric diversity and dissimilarity functions330

(Ricotta et al., 2021). Indeed, binding different heterogeneity metrics in order to331

analyze ecosystem changes proved to be a reliable approach to enhance the output332

information. Although remote sensing data have long held the promise of transform-333

ing environmental monitoring efforts, publicly accessible tools leveraging these data334

to achieve actionable in-sights have been lacking. We suggest that Rao’s AUC can335

be useful to identify areas more vulnerable to environmental changes , and to develop336

and implement appropriate habitat management plans and environmental policies.337
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Figure 1: From left to right: the NDVI images of Sardinia and Corsica before

and after the simulated perturbation, the correspondent AUC images and their

difference after - before the simulated perturbation.
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Figure 2: Three curves representing respectively: the mean values of parametric

Rao’s Q (i) before (yellow) and (ii) after (grey) the simulated ecological pertur-

bation (drought) of Figure 1, their correspondent confidence intervals and (iii)

their difference (after - before, dashed line) over increasing alphas.

Figure 3: Curves representing the values of parametric Rao’s Q for one pixel be-

fore (yellow) and after (grey) the simulated ecological perturbation (drought) of

Figure 1 over increasing alphas. The area under the curve (AUC) is highlighted.
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Figure 4: On top left, the Kangaroo Island before and after the fires (the area

used for the analysis is highlighted) and the selected area before and after the

fire in RGB false color (NIR, red, green); on the right the correspondent AUC

images and their difference after - before the fire.
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Figure 5: Post fire in Santa Barbara 2009 (left) and 2011 (right). The area

within the square is the studied area.
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Figure 6: From the top: RGB images of the study area (Santa Barbara, CA) in

2009 and 2011, the correspondent AUC images and their difference 2011 - 2009.
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