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Fusing Landsat and SAR data for mapping tropical deforestation through

machine learning classification and the PVts-β non-seasonal detection approach

ABSTRACT

This article focuses on mapping tropical deforestation using time series and machine learning

algorithms. Before detecting changes in the time series, we reduced seasonality using

Photosynthetic Vegetation (PV) index fractions obtained from Landsat images. Single and

multi-temporal filters were used to reduce speckle noise from Synthetic Aperture Radar (SAR)

images (i.e., ALOS PALSAR and Sentinel-1B) before fusing them with optical images

through Principal Component Analysis (PCA). We detected only one change in the two PV

series using a non-seasonal detection approach, as well as in the fused images through five

machine learning algorithms that were calibrated with Cross-Validation (CV) and Monte Carlo

Cross Validation (MCCV). In total, four categories were obtained: forest, cropland, bare soil

and water. We then compared the change map obtained with time series and that obtained with

the classification algorithms with the best calibration performance, revealing an overall

accuracy of 92.91% and 91.82% respectively. For statistical comparisons we used

deforestation reference data. Finally, we conclude with some discussions and reflections on the

advantages and disadvantages of the detections made with time series and machine learning

algorithms, as well as the contribution of SAR images to the classifications, among other

aspects.

RÉSUMÉ

Cet article porte sur la cartographie de la déforestation tropicale à l'aide de séries

chronologiques et d'algorithmes d'apprentissage automatique. Avant de détecter les

changements dans les séries temporelles, nous avons réduit la saisonnalité en utilisant les

fractions de l'indice de végétation photosynthétique (PV) obtenues à partir des images

Landsat. Des filtres mono- et multi-temporels ont été utilisés pour réduire le bruit de

chatoiement des images SAR (Synthetic Aperture Radar) (c'est-à-dire ALOS PALSAR et

Sentinel-1B) avant de les fusionner avec les images optiques par le biais de l'analyse en

composantes principales (ACP). Nous avons détecté un seul changement à la fois dans les

séries de PV en utilisant une approche de détection non saisonnière, ainsi que dans les images

fusionnées, grâce à cinq algorithmes d'apprentissage automatique qui ont été calibrés par

validation croisée (CV) et validation croisée de Monte Carlo (MCCV). Au total, quatre

catégories ont été obtenues : forêt, terres cultivées, sol nu et eau. Ensuite, nous avons comparé
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la carte des changements obtenue avec les séries temporelles et celle obtenue avec les

algorithmes de classification les plus performants en matière de calibration, révélant une

précision globale de 92,91% et 91,82% respectivement. Pour les comparaisons statistiques,

nous avons utilisé des données de référence sur la déforestation. Enfin, nous concluons par

quelques discussions et réflexions sur les avantages et les inconvénients des détections

effectuées avec les séries temporelles et les algorithmes d'apprentissage automatique, ainsi que

sur la contribution des images SAR dans les classifications, entre autres aspects.

Keywords

Deforestation, change detection, fraction index, photosynthetic vegetation, machine learning

algorithms
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Introduction

Deforestation resulting from anthropogenic activities, and defined as conversion of forest to another

land use, as well as the long-term reduction of the tree canopy cover below the minimum 10 percent

threshold (FAO 2018), have had a significant impact on terrestrial biodiversity and productivity all

over the World. In fact, forest change is one of the major processes of global land-cover change

(Ding et al. 2019). Forests play a crucial role in ecosystem services, including carbon sequestration,

climate and water cycle regulation, and maintenance of biodiversity (Gibson et al. 2011;

Turubanova et al. 2018). In particular, tropical regions have been undergoing rapid changes in forest

cover mainly due to land-use change. For example, tropical deforestation accounts for 10%–15% of

anthropogenic greenhouse gas emissions (Houghton 2013). Tropical deforestation has been

occurring since the 1980s (van der Werf et al. 2009; Achard et al. 2010; Hansen et al. 2013; Achard

et al. 2014) and threatens biodiversity, ecosystem services and water security on the planet.

Remote sensing has played a key role in studying the environment, especially since the launch of

Landsat-1 in 1972 (Vidal-Macua et al. 2017). Free and open access to the Landsat archive has

dramatically benefited operational applications, scientific studies, and discoveries based on analyses

of large numbers of Landsat images (Zhu et al. 2019). For example, annual forest change has been

globally mapped using available Landsat observations from 2000 to 2012. This global mapping

reports a net deforestation of 1.5 million km2 worldwide (Hansen et al. 2013). Several approaches,

which can exploit the full temporal detail of available archives, have been proposed to map tropical

deforestation from local to global scales (e.g., Souza et al. 2005; Asner et al. 2009; Kennedy et al.

2010; Verbesselt et al. 2012; Hansen et al. 2013; Zhu and Woodcock 2014). However, and

according to Tarazona et al. (2018), the main limitations of most of the detection algorithms based

on time-series, such as Breaks For Additive Season and Trend (BFAST) (Verbesselt et al. 2010) or

Continuous Change Detection and Classification (CCDC) (Zhu and Woodcock 2014), are: i) they

have different and excessive calibration parameters that hinder the process of effective and rapid
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monitoring of deforestation events; and (ii) they depend heavily on seasonality in the time series. To

address these limitations, Tarazona et al. (2018) proposed a novel detection approach called PVts-β,

which has one calibration parameter and detections that are not dependent on the seasonal

component of the time series.

However, in tropical regions cloud cover seriously affects the possibilities of adequately mapping

deforestation (Zhu et al. 2019), and some tropical countries have cloud cover that exceeds the

long-term yearly average frequency of 80%. Persistent cloud cover inhibits full optical coverage

from Landsat-like sensors even when compositing is performed over a period of 1 to 2 years (Souza

et al. 2013). Synthetic Aperture Radar (SAR) can penetrate clouds, and therefore has the potential

of complementing optical-based forest monitoring systems (Joshi et al. 2016). Several authors have

used these images to map deforestation (e.g., Park and Chi 2008; Trisasongko 2010; Jia and Wang

2018). Since Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic

Aperture Radar (PALSAR) data have become freely available and with the launch of the

Sentinel-1A and 1B C-band SAR satellites in 2014 and 2016 (Torres et al. 2012), for the first time,

dense SAR time series are free and openly available for the tropical region. Nevertheless, shorter

wavelength C-band (~5.5 cm) SAR is generally less useful for monitoring forest change due to the

lower penetration depth and rapid saturation of the signal over forests (Woodhouse 2005). However,

the high temporal observation density of the Sentinel-1 C-band compensates for the low sensitivity

for detecting deforestation, when compared to longer wavelength L-band (e.g., ALOS PALSAR)

SAR observations (Reiche et al. 2018). The main negative aspect of SAR images is speckle noise,

which impoverishes radiometric resolution and affects interpretation and classification results.

Reducing speckle-noise leads to a decrease in spatial resolution, and therefore reduces the potential

of these images for coverage analyses.

Multi-sensor data fusion approaches (Zhang 2010) combining SAR and Landsat optical sensors

have demonstrated a clear increase in forest mapping accuracy. This is mainly because fusing the

5



different data enhances visual interpretation and also improves the performance of quantitative

analyses. Furthermore, in recent years there have been significant advances in techniques for fusing

SAR with optical data, such as the wavelet-merging technique (Hong and Zhang 2008; Lu et al.

2011; Abdikan 2016), Principal Component Analysis (PCA) (Walker et al. 2010; Pereira et al. 2013;

Abdikan 2016) and intensity-hue-saturation (IHS) (Abdikan 2016). However, there is still no

consensus in the scientific community on the best method for integrating SAR and optical data for

mapping the effects of deforestation, especially in tropical forests (Pereira et al. 2013). Approaches

that combine optical and SAR time series imagery to detect deforestation must overcome various

challenges, including accurate co-registration and speckle noise, among others.

In this study, we propose detecting deforestation in a tropical region in south-eastern Peru using

only optical data (Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager

(OLI)), and combining optical data and SAR data, i.e. only two dates. An optical and radar image

for each date was used for the data fusion. For the first case, we used long series of Photosynthetic

Vegetation (PV) index fractions in order to reduce seasonality in the time series. These PV fractions

were obtained from the Carnegie Landsat Systems Analysis-Lite (CLASlite) program (Asner et al.

2009) under an Automated Monte Carlo Unmixing approach (AutoMCU), which provides

quantitative analysis of the fractional or percentage cover (0-100%) of live vegetation. In the second

case, the PCA method was used for data fusion, which does not lead to a loss in spatial resolution

(i.e., it does not perform smoothing) and makes it possible to obtain the contribution (%) of the

variables in the fusion. Therefore, our objectives address: (i) to detect changes in the Peruvian

rainforest between 2009 and 2018 (i.e., obtain a single change map) using the PVts-β approach

through PV series, (ii) to detect changes using machine learning algorithms with the fused images

for the same period as in the previous case, (iii) to evaluate the change maps obtained with the

PVts-β approach and the fused images, and (iv) to discuss the main advantages and disadvantages
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of detections based on time series and machine learning, as well as the benefits of the contributions

of SAR images to classifications and change detections.

Study area

Our study area is located in Madre de Dios, a region in the southeast of Peru (see Fig. 1). Madre de

Dios has a flat topography, with a minimum and maximum altitude of 170 and 360 masl (meters

above sea level). This moderate slope facilitates the co-registration process between optical and

SAR images. The study area is included in path/row 003/069 within the World Reference System-2

(WRS-2) and covers approximately 1100x1100 Landsat pixels (i.e., 1090km2). Madre de Dios is≈

a hotspot of great biodiversity (Tarazona and Miyasiro-López 2020) and 40% of its area is protected

by a set of Protected Natural Areas and Native Communities. It also has the largest coal reserves in

the world (Baccini et al. 2012). However, deforestation that occurs in the region, based mainly on

logging, agriculture and gold mining (Fig. 1c), is endangering forest ecosystem services and having

negative effects on the surrounding population and the Peruvian state. In fact, the latest reports of

deforestation, made by the Peruvian state through the national reports of the Ministry of the

Environment of Peru (MINAM), indicate an increase in deforestation in recent years.

Fig. 1. Political map (panel (a)) and Madre de Dios study area with a Landsat 8 OLI background

image in RGB combination: SWIR2, SWIR1 and GREEN bands (panel (b)). Panel (d) shows the

Digital Elevation Model (DEM) of the Shuttle Radar Topographic Mission (SRTM), both panel (b)

and panel (d) represent the same study area. Panel (c) shows gold mining through PlanetLabs

images (at 5m); in addition, the resolution of this image makes it possible to see the characteristics

of the gold mining in the study region (i.e., presence of water bodies).
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Data and methods

We follow a series of rigorous processes according to the premise set out in the introduction (see

Fig. 2). Section 3.1 details the pre-processing of optical images with the CLASlite software to

obtain the PV fractions and a standard pre-processing of the SAR images that includes

co-registration with optical images. Section 3.2 provides a review of the reference data used to

evaluate the obtained maps. In section 3.3 we conducted a brief and highly focused review of the

optical and SAR data fusion method used. Finally, in section 3.4 we include several techniques and

standard guidelines for the mapping and validation of the change cartography.

Fig. 2. Flowchart of the pre-processing and processing of the optical and SAR images is shown.

Satellite image processing

Landsat data and fraction indices

In this study, 50 images from Landsat TM and OLI pairs between 1990 and 2018 with a Tier

1 processing level (Young et al. 2017) were selected. Exactly 38 images correspond to the TM

sensor (1990-2011) and 12 to the OLI sensor (2013-2018). Photosynthetic Vegetation fractions were

obtained from 50 reflectance images with the CLASlite software (Asner et al. 2009). In short,

CLASlite uses the physical model Spectral Mixture Analysis (SMA) to obtain the PV fractions.

SMA assumes that the energy received within the field of vision of the remote sensor can be

considered as the sum of the energies received from each dominant endmember (specifically a

Linear Mixing Model). Therefore, we would expect advantages in the detections because we are

working with changes in photosynthetic activity at the subpixel level. Given the potential of

CLASlite subpixel analysis, the AutoMCU approach has been widely used to map forest

disturbance and deforestation worldwide (e.g., Asner et al. 2005, 2009; Carlson et al. 2012; Allnutt

et al. 2013; Bryan et al. 2013; Dlamini 2017; Tarazona et al. 2018).
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After obtaining the PV fractions we deal with the atmospheric artefacts using the Function of mask

(Fmask) (Zhu and Woodcock 2012) to mask clouds and cloud shadows. Subsequently, and to

generate cloud-free mosaics for each year, we used the algorithm proposed by Tarazona et al.

(2018). This algorithm consists in three steps: i) it chooses the image less affected by atmospheric

noise, retaining the image with the highest number of clear pixels and its acquisition time, ii) it

calculates the distances (i.e., differences in acquisition time) of the image selected in step (i) to the

remaining images, and iii) it takes the clean pixels of the images, starting with the image that has

the shortest distance to the image selected in step (i) and ending with the image most temporally

distant.

A total of 28 yearly PV fraction images was created (1990-2018 time series) (of a total of 50

images).

ALOS PALSAR and Sentinel-1 data

We used ALOS PALSAR data in Fine Beam dual Polarization (FBD) with Terrain Corrected

for this study. The image was acquired on 12 August, 2009, with a spatial resolution of 12.5 m,

swath of 70 km, in HH and HV-polarizations. Both polarizations were acquired in gamma-naught

radar backscattering coefficients ( ) (Rosenqvist et al. 2007). We softened the salt and pepperγ0

effect by using a Simple Speckle Filter (SSF) through the Lee filter (Lee 1980) with a movable 3x3

window. We then converted it into decibels (dB) using the SNAP software (Sentinel Application

Platform, see http://step.esa.int/main/download/) of the European Space Agency.

Sentinel-1 is a C-band Synthetic Aperture Radar (5.5cm wavelength) imaging mission (Torres et al.

2012) that supports a wide variety of applications, including deforestation assessment. Sentinel-1B

with VV+VH polarization (S1B-VV+VH) data were acquired in Interferometric Wide Swath mode

(IW with 250km swath). The S1B-VH+VV image was acquired on 22 December, 2018 and was

downloaded in Ground Range Detected (GRD) format. The pre-processing was also performed with

the SNAP software and consisted of three steps: (i) calibration, (ii) terrain correction, and (iii)
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smoothing of speckle noise just as we did with ALOS PALSAR. For terrain correction we used the

Range-Doppler Terrain Correction model and a three arc-second DEM obtained from the SRTM

and downloaded automatically by the SNAP software. The spatial output resolution after applying

the correction to the terrain was 10m. The VV and VH radar backscattering coefficients (σ0 in dB)

were obtained from digital number (DN) values through Eq. 1:

(1)𝑑𝐵
𝑖,𝑗

= 10 * 𝑙𝑜𝑔
10

(𝐷𝑁
𝑖,𝑗

2/𝐴2)

where, i, j represents the position (row and column), and A represents the calibration factor, which

can be looked up in the sigma naught values in the lookup table (LUT).

In addition, accurate multi-temporal co-registration is an essential prerequisite for change detection

and was also carried out with the SNAP software. The Optical Landsat (see section 3.3) image was

selected as master and the SAR images as slaves, and a Root Mean Square Error (RMSE) accuracy

threshold of 0.5 pixels was applied (i.e., 15m). The RMSE of the co-registration between the optical

and SAR images for the two periods was less than 0.5 pixels (Table 1).

Table 1. Number of tie points, threshold of accuracy and RMSE in pixel units obtained after

co-registration between optical and radar data.

Fusion Tie points RMSE

mean

RMSE

std

2009
SWIR1 (master) + HH (slave) 457 0.18167 0.09060

SWIR1 (master) + HV (slave) 489 0.16986 0.07929

2018
SWIR1 (master) + VV (slave) 568 0.24612 0.11843

SWIR1 (master) + VH (slave) 566 0.24455 0.11167

*std: standard deviation
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Deforestation reference data

In order to validate the detected deforestation events, two sources have been used as reference data

(i.e., deforested areas and intact forest mask). First, we used the official deforestation reports from

the Peruvian government carried out by the Ministry of the Environment (MINAM 2015) (see:

http://geobosques.minam.gob.pe/geobosque/view/index.php for more details). The methodology of

these reports is based on the work of Hansen et al. (2008) and Potapov et al. (2011). These reports

show the deforestation between 2001 and 2017. Second, we used the global forest change data from

Hansen et al. (2013), which were obtained from time-series analysis of Landsat images including

the OLI sensor. These reports are open-access and are usually used as ground truth (global forest

change between 2000 and 2018). We used the Google Earth Engine platform (Gorelick et al. 2017)

to download them (see:

https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html for more

details).

Fusion of SAR and optical images through PCA

To fuse optical (Landsat imagery) and SAR images (ALOS PALSAR and Sentinel-1) we used the

PCA method that is widely known by the scientific community (e.g., Pereira et al. 2013; Werner et

al. 2014; Abdikan 2016). The goal is to reduce the dimensionality through linear combinations of

the original variables, obtaining the contribution of the optical bands and SAR in the principal

components (PC). We believe that a description of the mathematical depth of the PCA is important

for understanding the internal process of fusion of the two images with different observation

geometries and which few studies have been able to develop; therefore, we present the

mathematical description in Appendix A.

A total of nine variables ( ) are considered in the two periods. Specifically, six optical bands for𝑍
𝑖

both 2009 and 2018, two HH and HV polarizations for 2009, and another two VV and VH

polarizations for 2018. In addition, we include the HH/HV and VV/VH ratios for 2009 and 2018,
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respectively. The two ratios are effective in detecting deforestation and are correlated with forest

phenology (e.g., Zeng et al. 2014 and Frison et al. 2018).

The Landsat images used for the fusion were selected to match the acquisition date of the SAR

images as closely as possible. Therefore, 28 August, 2009 and 6 September, 2018 were selected

from among the available optical images. To fuse the images we used the “fusionRS” function (see

Appendix B for more details). This function uses the prcomp function embedded in R (R Core Team

2020) to execute the PCA. The outputs of the "fusionRS" function are the eigenvalues,

eigenvectors, the correlation of the variables with the PC and the contribution in % of each variable

in each PC in a user-friendly and straightforward way (all the documentation on how to execute the

function and also examples can be found in Appendix B).

Moreover, given the nature of the SAR images and optical images, all variables were centred and

scaled (i.e., standardized) (Eq. 2) before computing the PCA to prevent any variable from having a

disproportionate influence on the PCA.

(2)𝑍 = 𝑥−μ
σ  

Where, x is the original variable, μ is the mean, σ the standard deviation of the original variables

and Z is the standardized variable.

Mapping deforestation

Non-seasonal detection approach

Time series methods for mapping deforestation are generally classified into seasonal and

non-seasonal approaches. Seasonal approaches are widely used and a variety of algorithms have

been proposed (e.g., those proposed by Verbesselt et al. 2012 or Zhu and Woodcock 2014), but all

of them are highly dependent on the seasonal component of the time series. As a result of this

dependence, they have a number of shortcomings that make it difficult to map changes in the forest
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quickly and accurately. However, the non-seasonal approach (e.g., PVts-β proposed by Tarazona et

al. (2018)), does not depend on seasonality and detections may be more accurate than the others.

Therefore, we used the PVts-β approach proposed to detect deforestation between 2009 and 2018.

For this, we used series of PV fractions to minimize the effect of seasonality and improve detection

accuracy. This approach consists of a series of processes that are detailed in the work of Tarazona et

al. (2018). The optimal threshold values (β) (Eq. 3) are 5 and 6 for PV series. In this work we used

the value β=5.

(3)𝐿
𝑖,𝑗

= µ
𝑖,𝑗

− β * σ
𝑖,𝑗

Where, is the lower limit, is the mean, is the standard deviation, is the threshold𝐿
𝑖,𝑗

µ
𝑖,𝑗

σ
𝑖,𝑗

β

magnitude and is the row and column position of a given pixel.𝑖, 𝑗

For example, Fig. 3 shows two time series of the PV fraction for pixels where the forest is

deforested. Fig. 3a shows a deforestation event due to agricultural activity in 2011, and Fig. 3b

shows another deforested area in 2010, caused by gold mining activity, which has a large negative

impact on the environment.

Fig. 3. Examples of time series of forests that have been deforested (points in blue). The Landsat

images in the top row are in combination SWIR2, NIR and RED. The middle row contains the PV

fractions scaled between 0 and 100. Finally, the lower row shows the detections made by the PVts-β

approach with β=5. The PV series were smoothed, before detecting deforestation, with the

"smootH" function (see Appendix B).

Classification methods

After applying PCA to fuse the images, five popular robust machine learning algorithms in

R language were used to detect changes. Support Vector Machine (SVM) was the first algorithm
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used. The SVM classifier is a supervised non-parametric statistical learning technique that does not

assume a preliminary distribution of input data (Mountrakis et al. 2011; Pôssa and Maillard 2018).

Its discrimination criterion is a hyperplane that separates the classes in the multidimensional space

in which the samples that have established the same classes are located, generally some training

areas. The SVM classifier has been efficiently used for mapping vegetation and forest (Knorn et al.

2009; Duro et al. 2012). The second algorithm used was Random Forest (RF). RF is a derivative of

Decision Tree which provides an improvement over DT to overcome the weaknesses of a single DT

(Pal 2005; He et al. 2017; Vlachopoulos et al. 2020). The prediction model of the RF classifier only

requires two parameters to be identified: the number of classification trees desired, known as

"ntree", and the number of prediction variables, known as "mtry", used in each node to make the

tree grow (Rodriguez-Galiano et al. 2012). The third algorithm used was Decision Tree (DT). DT is

also a supervised non-parametric statistical learning technique, where the input data is divided

recursively into branches (Chen et al. 2019) depending on certain decision thresholds until the data

are segmented into homogeneous subgroups. This technique has substantial advantages for remote

sensing classification problems due to its flexibility, intuitive simplicity, and computational

efficiency (Friedl and Brodley 1997). The fourth algorithm used was Naive Bayes (NB). The NB

classifier is an effective and simple method for image classification based on probability theory. The

NB classifier assumes an underlying probabilistic model and captures the uncertainty about the

model in a principled way, i.e. by calculating the occurrence probabilities of different attribute

values for different classes in a training set (Pradhan et al. 2010). The last algorithm used was

Neuronal Networks (NN). This classification consists of a neural network that is organized into

several layers, i.e., an input layer of predictor variables, one or more layers of hidden nodes, in

which each node represents an activation function acting on a weighted input of the previous layers’

outputs, and an output layer (Liu et al. 2019).
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The fine-tuning of model hyperparameters can significantly increase the target in both

training and testing; however, it also increases the cost of training models and the risk of overfitting.

Therefore, in this research we decided to use the default parameters (see S1 in supplementary

material) after examining a large number of studies (Belgiu and Drăguţ 2016; Tyralis et al. 2019;

Zurqani et al. 2019).

Since our study area is located in the Amazon, obviously the classes to be identified were mainly

forest, cropland, bare soil and water. Classification of crop types or differentiating secondary forests

from virgin forests will not be addressed in this study due to the nature and objectives of the

research. The objective is to separate forest from other classes.

Calibration

Undoubtedly, given the large number of machine learning algorithms, it was necessary to

select the one with the best performance in the classification, i.e. the algorithm in which the training

and testing data used converge the learning iteratively to a solution that appears to be satisfactory.

Therefore, calibration at this stage was crucial and was carried out through Cross-Validation (CV)

and Monte Carlo Cross-Validation (MCCV). We used k groups equal to 10 (10 iteration) and an

iteration equal to 100 for CV and MCCV respectively. In order to select the best classifier, which

will then serve as input for the 2009 and 2018 classifications, it was necessary to minimize the

testing bias (the mean of errors ) (Eq. 4) and the testing variance (the𝑒
𝑖

= 1 − 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

standard deviation of errors e_i) (Eq. 5) so that the model works well for both the training data and

the test data. This process and analysis was written in R with the help of some libraries, such as

caret and willcoxCV.

(4)𝑏𝑖𝑎𝑠 =
𝑖=1

𝑛

∑ 𝑒
𝑖
/𝑛  

(5)𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
𝑖=1

𝑛

∑ 𝑒
𝑖

− 𝑒( )2/𝑛
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Where, represents the position of a specific iteration and represents the total number of iterations𝑖 𝑛

executed.

Accuracy assessment and map comparison

A total of 1670 training points were taken to calibrate and validate the different cartographic

products generated (Table 2). These points were selected through the interpretation of the satellite

images themselves, truth-terrain reference data elaborated by MINAM (2015) and, on some

occasions, we used high-resolution images such as Google Earth. First, we selected 560 points for

the calibration of the five classifiers for each of the two years, 2009 and 2018, through a stratified

random sampling approach (Olofsson et al. 2014). These same points were also used to obtain the

definitive 2009 and 2018 class maps using the classifier with the best performance. In both periods,

the 560 points were split into training (60%) and testing (40%) sets through proportional stratified

random sampling. Finally, to validate the change map generated with the classifiers and the changes

with the PVts-β approach, we selected 550 points using stratified random sampling (80% for intact

forest and the rest for deforested areas).

Table 2. Number of points for the calibration of the classifiers and also for obtaining the change

cartography for the years 2009 and 2018, as well as samples for validating the changes obtained

with the classifiers and the PVts-β approach.

Calibration Change validation

Year 2009 Year 2018

Classifiers

Forest 225 225 Training

Cropland 125 125 336

Bare soil 105 105 Testing

Water 105 105 224

Total 560 560 560
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Change maps
550

PVts-β approach

To evaluate the accuracy of both the image fusion classifications and the detections of the PVts-β

approach, we used indicators such as overall accuracy, user's accuracy, producer's accuracy and

kappa index (Congalton and Green 2008). These indicators have been widely discussed and used in

a large number of papers, such as Schultz et al. (2016) and Duro et al. (2012), among others.

Fig. 4. Panel (a) and (b) show the combinations NIR, RED and GREEN and SWIR2, SWIR1,

GREEN from the year 2009 (Landsat-5 TM). Panel (c) and (d) show the same region with

polarizations HH and HV (ALOS PALSAR - 2009) respectively. Panel (e) and (f) show the

combinations NIR, RED and GREEN and SWIR2, SWIR1, GREEN from the year 2018 (Landsat-8

OLI). Panel (g) and (h) show the same region with polarizations VV and VH (Sentinel 1B - 2018).

Finally, panel (i) and (j) show the fused images of 2009 and 2018 respectively, in both cases using a

combination with the first three principal components.

Results

Fusion of optical and SAR images

The fusions of optical and SAR data for the years 2009 and 2018 are shown in Fig. 4(a-h). In both

panels, they are shown in a 1-2-3 combination of 9 principal components (Fig. 4i-j). Only the first

principal components provided the greatest variance in explaining the data in both 2009 and 2018

(Fig. 5). At this stage we used the jambu elbow (Tibshirani et al., 2001) to decide which

components to take out of the equation due to the poor contribution to the variance. In fact, for 2009

and 2018, only the six and five principal components had an accumulated variance of 98.96% and

99.44% respectively (Fig. 5). In addition, increasing the number of principal components would

bring us closer to a context of using almost all the variables involved and an increase in noise,
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which could ultimately hinder the classification process through automatic learning algorithms.

Fig. 5. Proportion of variance of each PC and the cumulative variance for the year 2009 is shown in

panel (a); panel (b) shows the same for the year 2018.

On the other hand, Table 3 shows the contributions (%) of the original variables to the principal

components. In general, for the year 2009 almost all optical bands had a significant contribution in

PC1 (except NIR band), the NIR and SWIR1 bands in PC2:3, all bands in PC4 (except SWIR2), all

(except RED and NIR bands) in PC5 and the NIR, SWIR1 and SWIR2 bands in PC6. While all

polarizations had a strong contribution in all PC1:6 (except HH in PC1, HH/HV in PC2 and PC6,

HV in PC3 and HH in PC6). In addition, it is important to note that, of all the SAR bands, the HV

polarization had the largest contribution in PC1, followed by HH/HV. For 2018, the behaviour is

quite similar. Like 2009, almost all optical bands made a large contribution in PC1 (except NIR

band), NIR, SWIR1 and SWIR2 bands in PC2, RED, NIR and SWIR1 in PC3, all bands in PC4 and

all bands (except SWIR1 and SWIR2) in PC5. While all polarizations, especially VH and VV, had a

significant contribution in PC1:5, with the exception of PC4.

Table 3. Contribution in percentages (%) of the variables to the principal components after the

fusion of optical and SAR images for the years 2009 and 2018. Lower contributions in each PC are

shown in red and blue for optical and radar bands respectively. The last PC that will not be used in

the classification are shown in grey.

Contributions (%)

Year 2009

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
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Proportion of

Variance (%)
48.601 21.013 10.806 8.067 5.890 4.579 0.722 0.286 0.035

BLUE 20.017 0.641 0.053 7.611 2.763 5.132 56.201 0.000 7.945

GREEN 21.138 0.204 0.061 6.675 2.370 2.780 2.486 1.194 63.212

RED 20.618 1.015 0.369 7.844 1.656 0.183 38.885 1.498 28.332

NIR 0.409 34.911 8.292 7.437 1.304 37.021 1.351 8.363 0.344

SWIR1 9.507 17.939 3.343 8.973 5.077 10.057 0.984 42.521 0.058

SWIR2 17.963 1.647 0.208 0.574 4.488 27.996 0.009 46.417 0.106

HH 1.725 18.939 35.887 15.133 27.235 2.118 0.002 0.001 0.000

HV 5.402 23.393 2.858 5.995 49.887 14.039 0.078 0.000 0.000

HH/HV 3.216 1.305 48.925 39.755 5.216 0.670 0.000 0.002 0.000

Year 2018

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Proportion of

Variance (%)
57.723 21.485 9.650 6.618 3.964 0.339 0.103 0.089 0.029

BLUE 16.698 0.772 1.568 8.781 9.807 53.780 0.200 0.001 8.389

GREEN 17.618 0.375 1.715 5.779 7.148 2.609 0.018 1.728 63.006

RED 17.816 0.125 2.151 2.780 6.491 41.863 0.163 0.547 28.058

NIR 0.382 28.121 17.701 40.529 11.477 0.547 0.117 1.100 0.021

SWIR1 7.373 22.559 4.034 22.293 2.661 0.388 3.596 36.929 0.163

SWIR2 12.684 11.431 0.357 18.788 0.110 0.008 3.052 53.207 0.358

VV 11.513 16.100 5.491 0.220 10.170 0.094 52.850 3.555 0.001

VH 12.173 5.548 9.535 0.500 48.260 0.590 21.554 1.835 0.001

VV/VH 3.737 14.965 57.444 0.325 3.871 0.116 18.446 1.093 0.000

19



Algorithm calibrations

From a series of five automatic learning algorithms, the idea was to select the classifier that meets

two conditions: (i) high overall accuracy and (ii) best performance in predicting the forest and

cropland categories within the validation data.

The bias and variance of the calibration of the classifiers had notable differences with CV and

MCCV (Fig. 6). That is, calibrations with CV had a slightly greater variance than calibrations with

MCCV, mainly because CV only explores some of the possible ways in which data could have been

partitioned (e.g., testing and training). In fact, MCCV allowed 90 times more exploration of

possible partitions from a total of . In short, the calibrations indicated that the algorithms𝐶
560
280≈∞

with the best performance in overall accuracy and the lowest variance were SVM, NN, and RF

(overall average accuracy of 97.50% and 98.00% with CV and MCCV respectively) for 2009 and

NN (overall average accuracy of 93.93% and 94.80% with CV and MCCV respectively) for 2018

(Fig. 6). However, all classifiers had an acceptable overall accuracy greater than 90%. In both

periods, the classifier with the lowest overall average accuracy was DT.

Fig. 6. The calibrations were performed through CV and MCCV, panel (a) is for the year 2009 and

panel (b) is for the year 2018. The minimum, maximum and average of the overall accuracies for
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each algorithm are shown. In addition, we show the variance obtained for the k=10 groups and for

100 iterations.

Table 4. Overall accuracy and Kappa index for all classification algorithms and both dates.

Omission errors (OM) and commission errors (CO) are also shown. All values are in percentages

(%). For overall accuracy, the highest values for each date are shown in bold, as well as lower

commission and omission errors in the forest and cropland categories. The green background

indicates the best classifier for each year, selected to maximize overall accuracy as well as minimize

omission and commission errors for forest and cropland areas. See S2 in the supplementary material

for more details.

Overall
Accurac

y

Kappa
Index

Water Forest Cropland Bare soil

OM CO OM CO OM CO OM CO

20
09

SV
M 95.09 93.07 0.00 0.00 0.00 9.00 22.22 2.78 2.44 2.44
DT 93.30 90.55 2.13 0.00 1.10 10.0 26.67 8.33 2.44 4.76
RF 95.09 93.11 2.13 0.00 1.10 6.25 17.78 5.13 2.44 6.98
NB 93.30 90.58 2.13 0.00 2.20 9.18 24.44 10.53 2.44 4.76
NN 95.09 93.09 0.00 0.00 1.09 8.16 20.00 5.26 2.44 2.44

20
18

SV
M 94.20 91.94 0.00 4.65 2.33 9.68 20.37 4.44 0.00 0.00
DT 92.86 90.12 0.00 10.87 3.49 6.74 20.37 10.42 4.65 0.00
RF 94.64 92.58 0.00 0.00 4.65 7.87 12.96 9.62 2.33 0.00
NB 93.75 91.38 0.00 4.65 6.98 6.98 14.82 11.54 0.00 0.00
NN 95.09 93.18 0.00 0.00 2.33 9.68 16.67 4.25 0.00 0.00

Visual examination of thematic maps

Since the objective is to quantify deforestation, it is very important that the algorithm optimally

discriminates the forest from other types of cover. Fig. 7 and 8 show the thematic maps obtained by

the five classifiers in 2009 and 2018 respectively. In both periods, especially in 2009, the visual

interpretation between the thematic maps obtained by the five classifiers revealed an erroneous

amount of the cropland class represented in the extreme north and southwest of the study area. In

fact, a visual inspection of the Landsat images and high-resolution PlanetLabs images revealed that
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these areas are predominantly covered by forests. However, there is also a certain level of

deforestation in these areas, which could have led to confusion between forest and cropland classes.

In general, all algorithms produced reasonably accurate land cover maps in both study periods.

Nevertheless, the results of the RF algorithm in 2009 and NN in 2018 were of special interest as

they show a better performance in separating forest and cropland cover with low omission and

commission levels, and with an overall accuracy of 95.09% in both years (Table 4). A more detailed

analysis showed that the average commission for the forest class in 2009 was 0.33% higher than in

2018, and the average omission for the same class in 2009 was 2.86% lower than in 2018. However,

the “salt and pepper” effect was present in both periods, especially in 2018 for the classifiers NB,

DT and NN (Fig. 7 and 8).

Fig. 7. Classifications using the six principal components of the fused image in the year 2009.

Panels (a), (b), (c)*, (d) and (e) represent the classifications obtained with SVM, DT, RF (*the

highest overall accuracy), NB and NN, respectively.

Fig. 8. Classifications using the five principal components of the fused image in the year 2018.

Panels (a), (b), (c), (d) and (e)* represent the classifications obtained with SVM, DT, RF, NB, and

NN (*the highest overall accuracy) respectively. Class “Difference*” represents the difference map

of the same classifier between 2009 and 2018 with ground truth (Hansen et al., 2013).

Change validation and statistical comparisons

Fig. 9 shows deforestation areas obtained with the PVts-β approach, the RF-NN classifiers (i.e.,

changes obtained using the RF and NN classifiers) and the reference data. Visually, the detections of

the PVts-β approach (Fig. 9a) and the RF-NN algorithms (Fig. 9b) reveal a lot of similarity with the

reference data of Hansen et al. (2013) (Fig. 9c) and the MINAM reports (Fig. 9d), although a closer

inspection showed some visual differences between the two detection methods, mainly south of the
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study region (i.e., in elliptical white line). That is, a compact and continuous quantification should

be expected. However, only the change obtained by the RF-NN classifiers shows something more

detectable and logical (i.e., detection of deforestation in areas of gold activity should include not

only the bare soil but also the water bodies in the areas).

However, the change maps showed that the overall accuracy obtained with the PVts-β approach was

92.91%. This was higher by 1.09% than the overall accuracy obtained with the RF-NN classifiers

(Table 5). In addition, the lowest omissions and commissions were obtained with the PVts-β

approach and RF-NN classifiers with 9.85% and 9.98% respectively. A visual analysis revealed that

the commission of the PVts-β approach was mainly in gold mining areas, while the omission was in

agricultural and gold mining areas, which were not optimally detected. Moreover, for a rigorous

statistical comparative analysis, a forest/non-forest mask of the reference data from Hansen et al.

(2013) was used to eliminate commissions from detection approaches. The statistics revealed that

there was no significant difference between the mapped areas with respect to the reference data. In

fact, both the PVts-β approach and the RF-NN algorithms detected a total of 18142.74ha and

16276.05ha respectively, while the reference data from Hansen et al. (2013) recorded 19708.35ha

between 2009 and 2018. For the period 2009-2017 the PVts-β approach detected 15998.31ha, while

Hansen et al. (2013) and MINAM reference data reported 16903.89ha and 17877.15ha respectively.

Finally, from the changes obtained with the RF-NN classifiers, it is important to mention that

between 2009 and 2018 the forests mainly changed to cropland 7169.49ha, bare soil 4507.56ha and

water 4599.00ha.

Fig. 9. Panel (a) and (b) show deforestation detections (2009-2018) obtained from the PVts-β

approach and the RF-NN classifiers respectively. Panel (c) and (d) show the reference data from

Hansen et al. (2013) and MINAM respectively. All the panels have the SWIR1, NIR and RED

combination from the year 2018 (Landsat 8 OLI) as the background.
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Table 5. Overall accuracy, kappa index, and the average commission and omission errors (average

commissions and omissions from deforestation classes and intact forest) are shown for the PVts-β

approach, and for the change obtained with the RF-NN classifiers. All values are in percentages

(%).

Overall

accuracy

Kappa

index
Commission Omission

PVts-β approach 92.91 78.36 11.67 9.85

Change with RF-NN 91.82 72.26 9.98 16.7

Discussion

As expected, image fusion showed that the HV and VH cross-polarizations had a slightly greater

contribution than the HH and VV polarizations in PC1 (Table 3). In general, for the year 2009, it is

observed that almost all the radar bands made a significant contribution to PC2:5, while for the year

2018, the highest radar contributions were observed in PC1:5 (except in PC4). In addition, the NIR

band (a representative optical band for vegetation mapping) made a lower contribution than any

other optical band in PC1 (even lower than the radar bands) in both study periods. However, this

was not the case with the RED band. On the other hand, the vegetation structure (Shimada et al.

2014) and the detection of non-photosynthetic activity (e.g. fallen leaves) due to the penetration of

ALOS PALSAR images, probably made it possible to map the forest class optimally in 2009 (see

omission in Table 4).

To explore the performance of image fusion in detections, we detected changes only with optical

images. These detections were underestimated by 2660ha with respect to the fused images, which is

shown in S3 in the supplementary material. We believe that the difference between what is detected
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with fused images and optical images is relatively small but it is an indicator that the fusion of

optical and radar data contributes to the mapping of deforestation.

Fig. 10. Column (a) shows SAR images without a speckle filter, column (b) images with SSF,

column (c) shows a Multi-temporal Speckle Filter (MSF). To evaluate the reduction of speckle

noise we used three indicators: (i) visual interpretation, (ii) Signal Level Ratio (SLR) (White et al.

2020), and (iii) the standard deviation of the intensity before and after applying filters for areas with

higher signal echo intensity (P3) and areas with lower signal echo intensity (P4) (column d). The

parameters for the MSF filter were used by default: i) filter: filter Lee, ii) Number of looks: 1, iii)

Window size: 7x7, and iv) Sigma: 0.9.

To analyse whether speckle noise and feature resolution had any influence on change detection, we

decided to apply a Multi-temporal Speckle Filter (MSF) (Quegan and Yu 2001) to the SAR images

before fusing with the optical data. For the year 2009, we obtained HH, HV and HH/HV

polarizations from a total of 7 ALOS PALSAR images; while for the year 2018, we obtained VV,

VH and VV/VH polarizations from a total of 11 S1B images (see S4 in the Supplementary

material). The change map showed a deforestation of 16132.77ha between 2009 and 2018 (in both

periods, we used PC1:6 ≈99% of cumulative variance) using the algorithms that performed best in

the calibrations, i.e. RF in 2009 as well as 2018. Although MSF resulted in sharper and clearer

boundaries (Fig. 10a-b-c in yellow and red lines), SSF together with optical data quantified the

deforestation better. Similar results were obtained in the study by Mirelva and Nagasawa (2017)

(although these authors only worked with radar data). Overall, no substantial differences were found

between the two filter types (Fig. 10-P3, P4, Table 6), although for the areas with higher signal echo

intensity the SSF filter performed better. In addition, the MSF seems to have an effect on the

contribution of the SAR bands to the first PC, since lower contributions were observed with respect

to SAR bands with SSF (see Table 3 and S4 for more details).
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Table 6. SLR is a ratio of the unfiltered image to the filtered image averaged over a region (R1 and

R2). A mean of one indicates that the filtered image preserves the signal level accurately. If the

mean varies from one, then there is a bias in the filtering method.

Mean SLR

RAW SSF MSF SSF MSF

R1
HH 0.2139 0.2140 0.2130 0.9995 1.0042

HV 0.0642 0.0642 0.0640 1.0000 1.0031

R2
VV 0.1417 0.1414 0.1774 1.0021 0.7988

VH 0.0331 0.0331 0.0390 1.0000 0.8487

Although the classifications obtained with the five classifiers performed well in overall accuracy,

they all had confusions between forest and cropland. This is mainly due to the similarity of the

spectral response of the two coverages, predominantly in the optical electromagnetic spectrum. In

these situations an increase in the number of variables, e.g. vegetation indices or other images from

different dates, improves the separability of certain relatively confusing covers and slightly

improves the overall accuracy of the classification, but does not detect deforestation better, as can

be seen in section S5 on the supplementary material.

Another aspect that needs to be discussed is the presence of "salt and pepper" in all the

classifications obtained, although much less in the period 2009. In general, SVM revealed a lower

proportion of this type of noise in the two study periods. It is not clear whether the speckle noise of

the SAR images was the main origin of the "salt and pepper” since Duro et al. (2012), who analysed

optical images, also obtained similar results to ours with classifications contaminated by this type of

noise in several algorithms of machine learning, although in a smaller proportion, by classifiers like

SVM and RF. In addition, the study area is a region with very particular characteristics and it is a

challenge to map deforestation, since the areas deforested by gold mining trigger not only the
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presence of bare soil (i.e., sand), but also water bodies (Fig. 1c). This is a product of the activity

itself which hinders certain pre-processing methods such as masking of atmospheric noise in optical

images (Tarazona et al. 2018). That is, masking of atmospheric noise could mask areas that are

deforested by mining activity. Therefore, the quantification of deforestation would reveal a certain

degree of omission. This is clearly seen in the quantifications (yellow lines) carried out with the

PVts-β approach and the reference data, but not so much with the quantifications carried out with

the RF-NN classifiers (see Fig. 9). This difficulty is not present in the SAR images (this can be seen

in the detection of fusion), where water bodies resulting from gold mining are recorded with low

backscatter values (see white lines in Fig. 9b).

Another important point of discussion is the detection threshold of the PVts-β approach, since the

omission of the detections occurred mainly in agricultural coverages. To avoid this deficiency, it is

possible to lower the threshold to β=3; however, this could trigger a slight increase in the

commission. In any case, for future work it will be important to assess to what extent a threshold of

β=3 can increase commission levels, although the latter is possible to combat with a

forest/non-forest mask.

Finally, according to this work’s context, it is important to make an analysis of the detection

approaches based on time series and those based on machine learning. Each approach has

advantages and disadvantages in certain aspects. For example, it is clear that a machine learning

approach, in contrast to a time series approach, is unlikely to detect slight changes over time in

photosynthetic activity. However, if the atmospheric noise and seasonality of the time series are not

eliminated or minimized correctly, it could make any further analysis in the time series difficult. On

the other hand, the machine learning approach has the advantage from a computational and

execution point of view (see S6 in the supplementary material). Furthermore, the main global

deforestation mapping methodologies are based on classifications such as Hansen et al. (2013),
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Hansen et al. (2016) and Asner et al. 2009 (CLASlite), although lately, thanks to the GEE platform

(Gorelick et al. 2017), there have been efforts to implement detections based on time series, such as

the LandTrendr method (Kennedy et al. 2010), which is embedded in GEE

(https://emapr.github.io/LT-GEE/). However, most detection methods based on time series have: i)

excessive calibration parameters, ii) are based strongly on seasonality, and iii) are complex to

execute for a standard user. On the other hand, the PVts-β approach is a method that: i) is simple

and intuitive and which does not model seasonality, ii) has only one calibration parameter to detect

deforestation, and iii) can be easily implemented by any standard user.

Conclusions

Fusing optical and SAR data has been studied at length in the past, but the contribution (%) of each

of the original variables within the fusion has not been addressed optimally. This research shows the

benefits of combining optical and SAR data for detecting deforestation compared to using only

optical data. The contribution of SAR bands, especially HV, HH/HV, VH and VV, was substantially

important in both study periods. We believe that the benefits can be greater if the SAR images have

been acquired after the optical images, since in areas of high precipitation cloud free optical images

are usually only available between June and September. Therefore, when only optical images are

used there is a void of three months with no record of the changes in the forest. Regarding speckle

noise, although MSF better preserves the characteristics of the entities (better "spatial resolution"),

it seems to decrease the contributions (unlike SSF) of the SAR bands in the data fusion and

underestimates the detection of deforestation. In addition, there were no significant differences

between the backscatter values obtained after applying MSF and SSF filters. However, the

calibration of the machine learning algorithms revealed that all classifiers had an acceptable overall

accuracy. In fact, all classifications had an overall accuracy of more than 90%.

The overall accuracy of the PVts-β and RF-NN detections were very similar, although the highest

commission and lowest omission were obtained with the PVts-β approach. We believe that this
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approach is a simple and intuitive detection method. Moreover, it can be applied to images that

come from different sensors with dissimilar periodicity because it does not depend on the

seasonality of the data (i.e., correlated data). In addition, it is important that the data set is large

enough (> 5 data) to avoid bias in the calculation of the mean and standard deviation.

Finally, given the increased interest and activity in simple, effective and low-cost forest monitoring

methods, PVts-β is clearly a strategic tool. Therefore, the PVts-β approach, the algorithm for fusing

optical and radar data and other functions are implemented in an open source package called

"ForesToolboxRS" (see Appendix B for more details).
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Appendix A.

All the variables (optical and SAR) are centred and scaled, and it is a question of calculating a new

set of bands ( , ,…, ) uncorrelated among themselves, whose variances progressively𝑌
1

𝑌
2

𝑌
𝑝

decrease. Each component ( ) is a linear combination of the original variables:𝑌
𝑗

𝑗 = 1,  …,  𝑝
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In abbreviated notation we will say 𝑌
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So the variance of the first component will be:
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Eq. (1) in (2)

                          1
𝑛 𝑢

1
𝑡 𝑍𝑡𝑍𝑢

1
= 𝑢

1
𝑡 1

𝑛 𝑍𝑡𝑍⎡
⎣

⎤
⎦𝑢

1
= 𝑢

1
𝑡 𝑅𝑢

1
              (3)

The expression is the matrix of correlations (R) on standardized variables (i.e., centered and1
𝑛 𝑍𝑡𝑍

scaled) (Jolliffe 2002; James et al. 2013).

The first component is obtained so that its variance is maximum, that is, it is about finding𝑌
1

𝑌
1

maximizing with the restriction .𝑣𝑎𝑟 𝑌
1( ) = 𝑢
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Since the objective is to maximize a function of several variables subject to a constraint and the

incognita being (the unknown vector that gives the optimal linear combination) we will apply the𝑢
1

Lagrange multiplier:

                             𝐿 𝑢
1( ) = 𝑢
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and then (derive with respect to the incognita ) and equal to zero:∂𝐿
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Eq. 5 can be deduced that and with roots , ordered from highest to𝑅 − λ𝐼| | = 0 λ
1
,  λ

2
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lowest . On the other hand, if we multiply to the left by , we conclude that:λ
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𝑡 𝑅 − λ𝐼( )𝑢

1
= 0    ⇒   𝑢

1
𝑡 𝑅𝑢

1
= λ    ⇒     𝑣𝑎𝑟 𝑌

1( ) = 𝑢
1
𝑡 𝑅𝑢

1
= λ 

To maximize the variance of , we have to take the largest eigenvalues and the corresponding𝑌
1

λ
1

eigenvectors , so that the first component is defined as . Therefore, all components are𝑢
1

𝑌
1

= 𝑍𝑢
1

expressed as the product of the matrix of eigenvectors multiplied by the vector containing the𝑍

original variables:

𝑌 = 𝑢𝑍

Being,

𝑌 = 𝑌
1
 𝑌

2
 ⋮ 𝑌

𝑝
 ( ) 𝑢 = 𝑢

11
 𝑢

12
 ⋯ 𝑢
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 𝑢

21
 𝑢
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𝑝𝑝
 ( ) 𝑍 = 𝑍

1
 𝑍

2
 ⋮ 𝑍

𝑝
 ( )

and {𝑣𝑎𝑟 𝑌
1( ) = λ

1
 𝑣𝑎𝑟 𝑌

2( ) = λ
2
 ⋮ 𝑣𝑎𝑟 𝑌

𝑝( ) = λ
𝑝
 

With the same logic it is possible to find the eigenvalues and eigenvectors for the remaining

components.

Appendix B. Code

The source code and full instructions on how to execute the functions can be found through GitHub

(please see https://github.com/ytarazona/ForesToolboxRS for more details).
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Supplementary material

S1:

Important packages and parameters used in each classifier.

Classifier Important parameters Package
SVM Kernel= linear e1071
DT method = "anova", type="class" rpart
RF ntree=500, mtry= , n: samples𝑛

importance=TRUE
randomForest

NB laplace = 0 e1071
NN Weights=1, size=50, rang=0.1,

decay=5e-4, maxit=200,
trace=FALSE

nnet



S2: Green background indicates the best classifier for each year, selected to maximize overall accuracy as well as to minimize omission and
commission errors for forests.

2009
Support Vector Machine Naive Bayes

Reference Reference
Prediction Water Forest Cropland Soil Total UA CO Prediction Water Forest Cropland soil Total UA CO
Water 47 0 0 0 47 100 0.00 Water 46 0 0 0 46 100 0.00
Forest 0 91 9 0 100 91.00 9.00 Forest 0 89 9 0 98 90.82 9.18
Cropland 0 0 35 1 36 97.22 2.78 Cropland 1 2 34 1 38 89.47 10.53
Soil 0 0 1 40 41 97.56 2.44 Soil 0 0 2 40 42 95.24 4.76
Total 47 91 45 41 224 Total 47 91 45 41 224
PA 100 100 77.78 97.56 OA=95.09%

Kappa=93.07%
PA 97.87 97.80 75.56 97.56 OA=93.30%

Kappa=90.58%OM 0.00 0.00 22.22 2.44 OM 2.13 2.20 24.44 2.44
Decision Tree Neural Network

Reference Reference
Prediction Water Forest Cropland Soil Total UA CO Prediction Water Forest Cropland Soil Total UA CO
Water 46 0 0 0 46 100 0.00 Water 47 0 0 0 47 100 0.00
Forest 0 90 10 0 100 90.00 10.0 Forest 0 90 8 0 98 91.84 8.16
Cropland 1 1 33 1 36 91.67 8.33 Cropland 0 1 36 1 38 94.74 5.26
Soil 0 0 2 40 42 95.24 4.76 Soil 0 0 1 40 41 97.56 2.44
Total 47 91 45 41 224 Total 47 91 45 41 224
PA 97.87 98.90 73.33 97.56 OA=93.30%

Kappa=90.55%
PA 100 98.90 80.00 97.56 OA=95.09%

Kappa=93.09%OM 2.13 1.10 26.67 2.44 OM 0.00 1.09 20.00 2.44



Random Forest
Reference

Prediction Water Forest Cropland Soil Total UA CO
Water 46 0 0 0 46 100 0.00
Forest 0 90 6 0 96 93.75 6.25
Cropland 0 1 37 1 39 94.87 5.13
Soil 1 0 2 40 43 93.02 6.98
Total 47 91 45 41 224
PA 97.87 98.90 82.22 97.56 OA=95.09%

Kappa=93.11%OM 2.13 1.10 17.78 2.44

2018
Support Vector Machine Naive Bayes

Reference Reference
Prediction Water Forest Cropland Soil Total UA CO Prediction Water Forest Cropland Soil Total UA CO
Water 41 0 2 0 43 95.35 4.65 Water 41 0 2 0 43 95.35 4.65
Forest 0 84 9 0 93 90.32 9.68 Forest 0 80 6 0 86 93.02 6.98
Cropland 0 2 43 0 45 95.56 4.44 Cropland 0 6 46 0 52 88.46 11.54
Soil 0 0 0 43 43 100 0.00 Soil 0 0 0 43 43 100 0.00
Total 41 86 54 43 224 Total 41 86 54 43 224
PA 100 97.67 79.63 100 OA=94.20%

Kappa=91.94%
PA 100 93.02 85.19 100 OA=93.75%

Kappa=91.38%OM 0.00 2.33 20.37 0.00 OM 0.00 6.98 14.82 0.00
Decision Tree Neural Network

Reference Reference
Prediction Water Forest Cropland Soil Total UA CO Prediction Water Forest Cropland Soil Total UA CO
Water 41 0 5 0 46 89.13 10.87 Water 41 0 0 0 41 100 0.00
Forest 0 83 6 0 89 93.26 6.74 Forest 0 84 9 0 93 90.32 9.68
Cropland 0 3 43 2 48 89.58 10.42 Cropland 0 2 45 0 47 95.75 4.25
Soil 0 0 0 41 41 100 0.00 Soil 0 0 0 43 43 100 0.00
Total 41 86 54 43 224 Total 41 86 54 43 224
PA 100 96.51 79.63 95.35 OA=92.86%

Kappa=90.12%
PA 100 97.67 83.33 100 OA=95.09%

Kappa=93.18%OM 0.00 3.49 20.37 4.65 OM 0.00 2.33 16.67 0.00
Random Forest

Reference
Prediction Water Forest Cropland Soil Total UA CO
Water 41 0 0 0 41 100 0.00
Forest 0 82 7 0 89 92.13 7.87
Cropland 0 4 47 1 52 90.38 9.62
Soil 0 0 0 42 42 100 0.00
Total 41 86 54 43 224



PA 100 95.38 87.04 97.67 OA=94.64%
Kappa=92.58%OM 0.00 4.65 12.96 2.33

S3:
To explore the performance of image fusion in detections, we detected changes only with optical images, using the DT classifier in 2009 and RF

in 2018 (as were the ones with best performance in this case) giving a total of 15482.88ha of deforestation between 2009 and 2018. These

statistics are below the changes detected with the PVts-β approach (18142.74ha) and the RF-NN classifiers on fused images (16276.05ha) for the

same period. We believe that the difference between what is detected by fused images and optical images is relatively small but it is an indicator

that the fusion of optical and radar data contributes to the  mapping of deforestation.

Classifications using only optical images. The calibrations were performed through CV and MCCV, being panel (a) for the year 2009 and panel

(b) for the year 2018. The minimum, maximum and average of the overall accuracies for each algorithm are shown. In addition, we show the

variance obtained for the k=10 groups and for 100 iterations.



S4: The acquisition dates of the ALOS PALSAR and Sentinel 1B images used for the Multi-temporal Speckle Filter are shown.

N° Date
(Day/month/year)

1 ALOS PALSAR Sentinel 1B
2 22062007 12102018
3 07082007 23102018
4 09052008 04112018
5 24062008 05112018
6 09082008 16112018
7 27062009 17112018
8 12082009 28112018
9 29112018
10 10122018
11 11122018
12 22122018





Variance and the accumulation of variance for optical data fusion and Multi-temporal Speckle Filter SAR bands are shown.



Correlations and contributions to optical and SAR data fusion with Multi-temporal Speckle
Filter are shown.

Correlations
Year 2009

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
BLUE 0.926 0.132 -0.031 0.191 -0.163 0.149 0.190 -0.000 0.015

GREEN 0.959 0.086 -0.030 0.180 -0.149 0.111 -0.040 -0.017 -0.044
RED 0.937 0.159 -0.049 0.221 -0.125 0.034 -0.158 -0.019 0.029
NIR 0.238 -0.780 0.165 -0.390 -0.093 0.376 -0.029 0.046 0.003

SWIR1 0.715 -0.548 0.104 -0.285 0.202 -0.204 0.025 -0.104 0.001
SWIR2 0.905 -0.150 0.018 -0.041 0.182 -0.330 0.002 0.109 -0.001

HH -0.157 -0.611 -0.303 0.597 0.365 0.139 0.000 0.000 0.000
HV -0.373 -0.689 -0.094 0.234 -0.501 -0.263 0.006 -0.000 0.000

HH/VH 0.118 0.049 -0.928 -0.345 -0.041 0.008 0.000 0.000 0.000
Year 2018

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
BLUE 0.935 0.028 -0.006 -0.321 0.009 -0.046 -0.132 0.000 -0.001
GREEN 0.955 -0.007 -0.008 -0.284 0.031 -0.046 0.027 0.011 0.004
RED 0.957 -0.046 -0.009 -0.243 0.068 -0.050 0.112 0.006 -0.002
NIR -0.081 0.825 -0.012 -0.163 -0.521 0.111 0.015 -0.009 0.000
SWIR1 0.687 0.593 -0.046 0.396 0.110 -0.001 -0.011 0.057 0.000
SWIR2 0.860 0.372 -0.036 0.286 0.181 -0.020 0.002 -0.067 0.000
VV -0.596 0.506 0.078 -0.284 0.458 0.301 0.001 0.000 0.000
VH -0.693 0.479 0.036 -0.140 0.143 -0.496 0.003 -0.001 0.000
VV/VH 0.158 -0.006 0.985 0.047 -0.035 -0.006 -0.000 0.000 0.000

Contributions (%)
Year 2009

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
BLUE 20.321 0.957 0.098 4.133 5.027 5.352 56.150 0.000 7.958
GREEN 21.777 0.407 0.089 3.679 4.157 2.984 2.482 1.203 63.216
RED 20.812 1.379 0.243 5.544 2.947 0.287 38.960 1.504 28.319
NIR 1.347 33.191 2.729 17.241 1.644 33.951 1.317 8.238 0.337
SWIR1 12.112 16.401 1.079 9.217 7.695 10.005 1.017 42.410 0.060
SWIR2 19.413 1.230 0.035 0.197 6.257 26.110 0.006 46.640 0.107
HH 0.590 20.356 9.133 40.276 24.989 4.650 0.000 0.001 0.000
HV 3.293 25.938 0.882 6.223 46.955 16.641 0.065 0.000 0.000
HH/HV 0.330 0.135 85.708 13.484 0.324 0.016 0.000 0.000 0.000

Year 2018
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

BLUE 18.291 0.047 0.004 16.861 0.015 0.615 55.856 0.000 8.306
GREEN 19.065 0.003 0.006 13.259 0.178 0.608 2.363 1.728 62.785
RED 19.161 0.132 0.008 9.702 0.849 0.712 40.557 0.474 28.401
NIR 0.137 41.016 0.015 4.361 49.019 3.502 0.740 1.186 0.019
SWIR1 9.874 21.196 0.215 25.681 2.185 0.000 -0.418 40.281 0.145
SWIR2 15.464 8.334 0.133 13.364 5.917 0.113 0.022 56.309 0.340
VV 7.427 15.409 0.620 13.180 37.922 25.420 0.012 0.002 0.000
VH 10.054 13.856 0.132 3.213 3.686 69.010 0.029 0.014 0.000
VV/VH 0.523 0.002 98.862 0.374 0.225 0.010 0.000 0.000 0.000



S5:

Without denaturing the objectives of this study, we did the exercise of classifying using the

principal components obtained in the fusion (i.e., PC1:6 and PC1:5 in 2009 and 2018 respectively)

and adding 4 NDVI indices in total (2 in each period), i.e. two indices come from the images used

(see section 3.3), and the others were acquired on September 6, 2009 and June 18, 2018. The best



classifiers in this scenario were SVM in 2009 (with OA of 97.77%), and NB in 2018 (with OA of

96.64%) (See S5 in supplementary material). Moreover, the addition of the multi-temporal indices

improved discrimination of forest cover and also of cropland (particularly in 2009), not so in the

quantification of the deforestation of 14673.54ha between 2009 and 2018 below that detected with

the fused image (16276.05ha) (i.e., PC without indexes and SAR bands with SSF) and even below

the detections obtained with the optical images (15482.88ha). At this point of the situation, some

explanations arise, e.g. the indexes added in the classifications were acquired with an earlier date

than the images used in the classifications, so that this retrogression in time could contaminate the

changes that occurred in the image with a more recent date. Additionally, a thorough analysis

revealed that these new detections, with respect to the fused images and the PVts-β approach, were

mainly at the edges of change; so the addition of new variables such as NDVI indices may have

decreased the sensitivity of the detections. Therefore, it is important to highlight that improving the

classification accuracy of certain coverages through the addition of new variables may have a

negative impact on the detection of change, at least this study suggest it. Consequently it will be

important to address this aspect in future work in greater detail.

Overall accuracy and Kappa index for all classification algorithms and both dates (principal

components + 2 NDVI indices). Omission errors (OM) and commission errors (CO) are also shown.

All values are in percentages (%). For overall accuracy higher values for each date are shown in

bold, as well as lower commission and omission errors in Forest category.

Overall
Accurac

y

Kappa
Index

Water Forest Cropland Soil

OM CO OM CO OM CO OM CO

20
09

SV
M 97.77 96.90 0.00 0.00 1.15 2.27 7.27 1.92 0.00 4.44
DT 91.07 87.61 7.69 2.70 4.60 6.74 18.18 11.76 6.97 14.89
RF 97.32 96.28 2.56 0.00 1.15 2.27 7.27 1.92 0.00 6.52
NB 96.42 95.05 2.56 2.56 1.15 5.49 10.91 2.00 0.00 2.27
NN 97.77 96.91 0.00 0.00 3.45 1.18 3.64 5.35 0.00 2.27



20
18

SV
M 93.75 91.17 0.00 0.00 3.26 11.00 22.00 7.14 0.00 0.00
DT 90.63 86.70 2.63 0.00 4.35 13.73 28.00 16.28 4.55 0.00
RF 93.75 91.20 2.63 0.00 4.35 8.33 16.00 12.50 2.27 0.00
NB 94.64 92.47 2.63 0.00 4.38 7.39 14.00 10.42 0.00 0.00
NN 92.86 90.04 2.63 0.00 4.35 6.82 28.00 18.52 4.55 0.00

S6:
For a window system with 4 processor cores, 16 GB RAM and using parallel programming, the

execution times of the machine learning classifiers was considerably shorter than the execution time

of the PVts-β approach (Table 6).

Execution times (in seconds) of both the machine learning classifiers and the pvts function (i.e.,

PVts-β approach).

Classifier/
Approach

Time (s)

Fused image
(PC1:6,
PC1:5)

Optical image
(6 bands)

PC1:6,
PC1:5+2NDVI

(6 bands)

Year 2009

SVM 4.85 4.39 4.84
RF 11.00 9.03 5.64
NB 97.09 95.04 107.55
DT 3.57 3.61 4.77
NN 2.75 2.02 3.72

Year 2018

SVM 3.93 4.75 5.43
RF 9.34 8.84 9.50
NB 91.82 96.17 101.28
DT 3.47 3.54 3.73
NN 2.59 1.85 2.44

Year (2009 -
2018) PVts-β

Function “smootH” 848.09
Function “pvts” 64.82

*to see the “smootH” and “pvts” functions see Appendix B for more details.


