
RESEARCH ARTICLE

Pattern-based identification and mapping of landscape types using

multi-thematic data

Jakub Nowosada, Tomasz F. Stepinskib

aInstitute of Geoecology and Geoinformation, Adam Mickiewicz University, Poznan, Poland;
bSpace Informatics Lab, Department of Geography and GIS, University of Cincinnati,
Cincinnati, OH, USA

ARTICLE HISTORY

Compiled March 7, 2021

ABSTRACT

Categorical maps of landscape types (LTs) are useful abstractions that simplify spa-
tial and thematic complexity of natural landscapes, thus facilitating land resources
management. A local landscape arises from a fusion of patterns of natural themes
(such as land cover, landforms, etc.), which makes an unsupervised identification
and mapping of LTs difficult. This paper introduces the integrated co-occurrence
matrix (INCOMA) – a signature for numerical representation of multi-thematic
categorical patterns. INCOMA enables an unsupervised identification and mapping
of LTs. The region is tessellated into a large number of local landscapes – patterns
of themes over small square-shaped neighborhoods. With local landscapes repre-
sented by INCOMA signatures and with dissimilarities between local landscapes
calculated using the Jensen-Shannon Divergence (JSD), LTs can be identified and
mapped using standard clustering or segmentation techniques. Resultant LTs are
typically heterogeneous with respect to categories of contributing themes reflecting
the human perception of a landscape. LTs calculated by INCOMA are more faith-
ful abstractions of actual landscapes than LTs obtained by the current method of
choice – the map overlay. The concept of INCOMA is described, and its applica-
tion is demonstrated by an unsupervised mapping of LT zones in Europe based on
combined patterns of land cover and landforms.

KEYWORDS
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1. Introduction

The term “landscape” means different things in different scientific domains, in this
paper, we follow the definition of landscape as a recognizable, although often hetero-
geneous part of the terrestrial surface showing characteristic pattern of natural themes
(Mücher et al. 2010). There is a significant interest in the identification and classifica-
tion of landscape types (LTs) as a foundation for planning and management to develop
optimal strategies for sustainable use of land resources (Wascher 2005; Mücher et al.
2010). LTs also provides first-order information about the geographical distribution of
biodiversity and ecological processes (Heikkinen et al. 2004).
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The spatial and thematic complexity of landscapes can be better grasped in terms
of categorical spatial zones. However, because of their complexity, identifying, and
mapping LTs using available data is challenging. First, multiple layers (themes), in-
cluding topography, land cover, climate, and soil/geology, contribute to the character
of a landscape. Global categorical datasets for those themes exist (Karagulle et al.
2017; ECMWF 2019; Metzger et al. 2013; Hengl et al. 2017), but how to best com-
bine them so they reflect a LT remains an open question. Second, a landscape must
have a spatial scale larger than the size of cells in global datasets of natural themes
(∼ 300 m) and thus, it is characterized by patterns that contributing variables form
over its extent rather than by values of these variables (Omernik and Griffith 2014).
Using multi-thematic data and pattern-based elementary spatial units is needed for
the identification and mapping of landscapes.

Simensen, Halvorsen, and Erikstad (2018) offered a review of 54 different papers
devoted to landscape identification, classification, and mapping. The majority of them
covered a single country or a single region within a country, while two (Mücher et al.
2010; Sayre et al. 2014) had a continental or global coverage. This review did not
focus on specific technical methodologies employed, but the two papers where land-
scapes were mapped on a large spatial scale both used multi-thematic datasets but
were cell-based instead of being pattern-based. Such an approach has some important
shortcomings. First, it identifies LTs at the scale of the size of the cell. Therefore,
spatial units of maps stemming from these methods are homogeneous in categories
of contributing variables. By not being pattern-based, these methods can only map
homogeneous LTs, whereas many LTs, especially those defined on the scale of a few
kilometers or more, are heterogeneous.

Wickham and Norton (1994) were the first to consider a pattern-based approach to
the identification and mapping of LTs. In such approach, a study area is tessellated into
relatively small square blocks of cells carrying values of contributing variables. Each
block is characterized by a pattern formed by values of contributing variables over its
extent, therefore we refer to it as a local landscape (LL) – a landscape at the scale that
is large enough to be called a landscape but small in comparison to the size of the study
area. Identification and delineation of LTs are tantamount to grouping similar LLs into
distinct clusters (zones). Recent works based on the LL concept can be divided into
three groups, those devoted to mapping LTs (Long, Nelson, and Wulder 2010; Cardille
and Lambois 2010; Cardille et al. 2012; Partington and Cardille 2013; Niesterowicz
and Stepinski 2013; Niesterowicz, Stepinski, and Jasiewicz 2016; Niesterowicz and
Stepinski 2017; Nowosad and Stepinski 2018), those enabling search using a query-by-
example (Stepinski, Netzel, and Jasiewicz 2013; Liu et al. 2017), and those which assess
temporal change (Netzel and Stepinski 2014; Nowosad, Stepinski, and Netzel 2019). It
is important to note that starting from the paper by Wickham and Norton (1994) all
cited pattern-based methods used only a single theme – land cover. Therefore, they
cannot be used to identify landscape types in the sense we consider them in this paper.

Pattern-based methods have two fundamental ingredients: (a) pattern signature
and (b) a dissimilarity function. A pattern signature is a numerical embedding of a
categorical pattern. A signature is a vector of numbers quantifying a pattern in a
form that can be utilized for the calculation of similarity between different patterns.
A dissimilarity function (also called a “distance”) is a function that takes signatures
of two patterns as an input and outputs a single number that quantifies a degree of
dissimilarity between two patterns. A categorical pattern has two major attributes,
its composition (how its constituting cells are distributed between different categories)
and its configuration (how the cells are spatially arranged to form a motif). Similar
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patterns have similar compositions and similar configurations. A dissimilarity func-
tion is used for grouping LLs into distinct zones by either clustering or segmentation
techniques. In each zone a dissimilarity between any two constituent LLs is small, i.e.,
same motif approximately repeats itself throughout the zone.

Early works (Long, Nelson, and Wulder 2010; Cardille and Lambois 2010; Cardille
et al. 2012; Partington and Cardille 2013) used a set of landscape metrics (O’Neill et al.
1988; Turner and Gardner 1991) as a pattern signature and the Euclidean distance as a
dissimilarity function. However, Niesterowicz and Stepinski (2016) demonstrated that
a pattern signature based on landscape metrics suffers from problems of normalization
and assigning weights. Moreover, it is not clear how to extend this approach to multi-
thematic patterns. Alternatively, previous research used a signature based on a co-
occurrence matrix (COMA) that provides a statistical description of the whole pattern
without quantifying individual elements (Haralick, Shanmugam, and Dinstein 1973;
Barnsley and Barr 1996; Chang and Krumm 1999; Jasiewicz, Netzel, and Stepinski
2015). The COMA tabularizes first order adjacencies – pattern-wide counts of the pairs
of the adjacent cells of given categories. As such, they form a pattern’s signature that
is free from issues of normalization and assigning weights. COMA signatures, which
are normalized histograms (discrete probability distributions), are often paired with
the Jensen-Shannon Divergence (JSD) (Lin 1991) as a dissimilarity function.

The purpose of this paper is to extend the COMA/JSD method to multi-thematic
patterns so we can identify and map LTs as defined at the beginning of this section.
For this purpose, only the signature needs a modification as the JSD will work with
any signature which is in the form of a normalized histogram, regardless of what this
histogram represents. We introduce the integrated co-occurrence matrix (INCOMA) –
an extension of a COMA signature for numerical representation of multi-thematic cat-
egorical patterns. INCOMA is based on the ideas from the field of pattern recognition
in images (Vadivel, Sural, and Majumdar 2007). INCOMA tabularizes intra-thematic
as well as inter-thematic adjacencies. By doing so it contains not only information
about patterns of all variables but also information about relative positions of differ-
ent patterns.

To demonstrate the ability of INCOMA to identify and map LTs we apply it to the
continent of Europe using two variables – land cover (LC) and landforms (LF). The
method identifies twelve LTs. We assess the quality of this delineation, i.e., calculate
an average dissimilarity between motifs in a zone (the smaller the value the better),
and an average dissimilarity between motifs in different zones (the larger the better).
We also compare the resultant map with (a) the map obtained by an overlay of LC and
LF maps, which results in 130 LTs, and (b) the method that first performs pattern-
based delineations of LC and LF separately (using COMA) and then overlays the
two pattern-based maps of LC patterns and LF patterns. This method yields 36 LTs.
The comparison reveals that of the three methods, only INCOMA can produce, in an
unsupervised fashion and without post-processing, a delineation that includes zones
characterized by simple motifs (e.g., collections of LLs with mostly homogeneous land
cover and landforms) as well as zones characterized by complex motifs (e.g., collections
of LLs with mostly heterogeneous land cover and landforms).

2. Materials

We used two global categorical raster datasets as inputs to an unsupervised algorithm
that identifies and maps LTs in Europe, the C3S land cover map for the year 2018
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(ECMWF 2019), and the Hammond’s landforms map (Karagulle et al. 2017). The
C3S global land cover map was produced by the European Space Agency. It consists
of 64,800 by 129,600 pixels, thus their spatial resolution is 10 arc-seconds (about 300
meters at the equator). Each pixel is assigned to one of 37 land cover categories, with
some existing only for regions with more accurate information available. Hammond’s
landforms map has sixteen categories of landforms based on global 250-meter resolu-
tion GMTED2010 elevation data. It consists of 67,020 by 172,800 pixels. We repro-
jected both datasets into the interrupted Goode homolosine projection and resampled
them to the resolution of 300 meters. Furthermore, in C3S, we grouped 37 original
categories into nine broader IPCC (Intergovernmental Panel on Climate Change) cat-
egories that represent major classes of land cover: agriculture, forest, grass, wetland,
settlement, shrubland, sparse, bare, and water.

3. Methods

3.1. Co-occurrence matrix

A COMA is constructed by counting all pairs of the adjacent cells in the categorical
raster representing a single theme over the study area. The adjacency is defined by
the Von Neumann neighborhood (four cardinal directions). Thus, COMA is a k × k
square matrix, where k is a number of unique categories present in the theme. The
normalized COMA (the sum of all matrix components adds to 1) is a joint probability
distribution of two variables, “a value of categorical label of the focus cell” and “a value
of categorical label of the adjacent cell.” COMA serves as a pattern’s “signature” – a
statistical summary of the pattern, which is invariant to rotation and reflection of the
pattern and can be used to assess a degree of dissimilarity between two patterns.

For convenience, we flatten the COMA row-wise to transform it (without any loss
of information) into a histogram (right panels in Figure 1). Because we consider un-
ordered adjacent pairs, the COMA transforms into a histogram with (k2 + k)/2 bins
(symmetric off-diagonal terms are added to a single bin). Both normalized matrix and
histogram derived from it represent the bi-variate probability distribution of adjacent
pairs occurrence in the pattern, the histogram is just a format more convenient to
pass to a dissimilarity function. Note that the dimensions of the matrix or the length
of the histogram depend only on the number of categories. As the distinction between
normalized COMA, non-normalized COMA, and the normalized histogram is clear
from the context, we use COMA abbreviation for all.

The concept of COMA is illustrated in Figure 1. This figure shows an LL with a
land cover (LC) pattern shown in the upper row and a landforms (LF) pattern shown
in the lower row; both thematic layers have just two categories. COMAs and corre-
sponding histograms are also shown. Because there are only two categories, COMAs
are 4×4 matrices, and histograms have only three bins. The first and the last bins
correspond to the intra-thematic co-occurrence of categories, if those bins are high,
the patterns are integrated - cells of different categories form large spatial patches.
The middle bin corresponds to the inter-thematic co-occurrence of categories. In an
integrated pattern, where different categories rarely co-occur, these bins are low. Note
that the middle bin for LF is higher than the middle bin for LC, reflecting more co-
occurrences between two LF categories than between two categories of LC. Although
each histogram characterizes its corresponding pattern, together they are insufficient
to unambiguously describe LTs (bi-modal patterns consisting of LC and LF). This is
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because they do not carry information about relative layouts of the two patterns.
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Figure 1. Two illustrative patterns of categorical rasters and their spatial signatures, a non-normalized
COMA and a COMA histogram. (A) A land cover data with two classes (LC1) Cropland and (LC2) Forest.
(B) A landform data with two classes (LF1) Mountains and (LF2) Plains

3.2. Dissimilarity function

A dissimilarity between two patterns is calculated using a dissimilarity function. There
is a large selection of possible functions that measure dissimilarity between two his-
tograms (Cha 2007). We use the Jensen-Shannon divergence (Lin 1991) to calculate
dissimilarity between two histograms because of its robustness and because it has been
shown to have a good performance in the side-by-side comparison with other measures
(Rubner et al. 2001). The Jenson-Shannon divergence (JSD) is given by

JSD(A,B) = H(
A + B

2
) −

1

2
[H(A) + H(B)], (1)

where A and B are LLs signatures (normalized histograms) and (A + B)/2 is a nor-
malized histogram constructed by concatenation of A and B. Symbols H(A), H(B),
and H((A+B)/2) are the values of the Shannon entropy (Shannon 1948) for different
histograms. The JSD takes values from 0 to 1, with the value of 0 indicating that two
COMAs are identical (the two patterns are very similar), and the value of 1 indicat-
ing that two COMAs do not share bins (patterns do not share classes and are thus
very dissimilar). Intermediate values of JSD, between 0 and 1, represent a degree of
dissimilarity between the two patterns. For a discussion of how to interpret the values
of JSD see Stepinski, Netzel, and Jasiewicz (2013) and Niesterowicz, Stepinski, and
Jasiewicz (2016).

3.3. Integrated Co-occurrence Matrix

Vadivel, Sural, and Majumdar (2007) developed a signature of color image called
Integrated Color and Intensity Co-occurrence Matrix (ICICM) to improve context-
based image search and retrieval. An image is characterized by the color and intensity
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Figure 2. Bi-thematic categorical pattern and two forms of its signature, integrated co-occurrence matrix

and normalized histogram. Lines are drawn in the middle panel to indicate a blocky structure of INCOMA.

of its constituent pixels. These authors showed that including information about spatial
relations between the raster of colors and the raster of intensities improves the image
signature and leads to better image retrieval results. The situation in geographic multi-
thematic patterns is analogous, except it may not be restricted to only two patterns.

Based on this insight, we propose a modification of ICICM for application to ge-
ographical multi-thematic patterns. We call this modification the INtegrated CO-
occurrence MAtrix (INCOMA). In the bi-thematic case, the INCOMA is analogous to
ICICM, so a reader interested in the mathematical description is referred to Vadivel,
Sural, and Majumdar (2007). However, the key concept of INCOMA can be explained
without mathematics by using a simple illustration (Figure 2).

This illustration shows a bi-thematic site having simple patterns of LC and LF
(each theme has only two categories). Two adjacent cells in the bi-thematic pattern
are characterized by four numbers, x - a category of theme 1 in the focus cell, y - a
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category of theme 1 in the adjacent cell, w - a category of theme 2 in the focus cell, and
v - a category of theme 2 in the adjacent cell. For the bi-thematic pattern shown in
Figure 2, each of these variables has only two possible values. In general, each variable
has as many values as there are categories in a corresponding theme.

INCOMA is constructed from blocks, with each block by itself being a COMA.
Diagonal blocks are COMAs of theme 1 and theme 2, respectively. Off-diagonal blocks
are COMAs calculated from adjacent pairs of cells, where a focus cell uses its theme 1
category label, and an adjacent cell uses its theme 2 category label. For example, the
lower off-diagonal block in the middle panel of Figure 2 informs that 4721 LC1 cells are
adjacent to LF1 cells, 15072 LC2 cells are adjacent to LF1 cells, 15079 LC1 cells are
adjacent to LF2 cells, and 4728 LC2 cells of adjacent to LF2. These off-diagonal blocks
provide information about spatial relations between categories from different themes,
while diagonal blocks provide information about the spatial relationships between
categories of the same theme.

Note that INCOMA is not a joint probability distribution of variables x, y, w,
and z. It contains less information than the joint probability distribution. However,
its advantage is a smaller size. The small size of INCOMA in comparison with the
size of joint probability may not be obvious from the simple example in Figure 2,
but assuming a more realistic number of classes, C1 = 5 classes for LC and C2 = 10
classes for LF, INCOMA consists of only (C1 +C2)

2 = 225 numbers, whereas the joint
probability consists of C1 × C2 × C1 × C2 = 2500 numbers.

Extending INCOMA to more than two modalities is straightforward, with n themes,
the INCOMA has n2 blocks. If themes have a different number of classes, the diagonal
blocks would have different sizes but would maintain square shapes, off-diagonal blacks
would have different sizes and rectangular shapes. However, the entire INCOMA would
have a square shape with the linear size equal to the sum M of categorical classes in all
themes M = m1+m2+· · ·+mn. We normalize INCOMA so the sum of all components
in all of its blocks is equal to 1 and flatten it to a 1D histogram with (M2 + M)/2
bins. This makes it a well-defined input to the JSD.

3.4. Software

We wrote an open-source R (R Core Team 2020) package comat (Nowosad 2020)
allowing to create integrated co-occurrence matrices and integrated co-occurrence his-
tograms based on input data in the form of a categorical matrix. Most functions in
this package use computationally fast and memory-efficient C++ code. comat depends
only on two other R packages, Rcpp and RcppArmadillo (Eddelbuettel and François
2011; Eddelbuettel and Sanderson 2014), and therefore can be used as a building block
for other R packages. The package installation instructions and documentation can be
found at https://nowosad.github.io/comat/.

Additionally, we used the philentropy package (Drost 2018) to calculate the distances
between the co-occurrence histograms, the stars package (Pebesma 2020) to represent
raster data, and the motif package for (Nowosad 2021) to perform pattern-based
analysis.

4. Identifying and mapping landscape types in Europe

To demonstrate how INCOMA works on real-world data, we use it to perform an
unsupervised identification and mapping of LTs in Europe based on two themes, LC
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Figure 3. Map of 12 landscape types in Europe obtained by clustering 105,512 9 km×9 km LLs (INCOMA

embeddings of patterns of land cover and landforms). Numbers following legend descriptions are numerical
labels of LTs.

and LF. The resulting zones enclose characteristic patterns of LC and LF categories.
We used the two datasets described in Section 2 clipped to the coordinates of -13◦

West to 43◦ East and 35◦ North to 73◦ North to isolate Europe. Next, the study area
is divided into 105,512 non-overlapping 9 km×9 km (30×30 cells) square blocks or
LLs. Patterns of LC and LF in each LL are used to calculate INCOMA signature
of LL. Identification of LTs is achieved via clustering LLs into a given number of
clusters. To get insight into the appropriate number of clusters, we performed the
t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton 2008) to
visualize the structure of the multi-dimensional space of INCOMA signatures in a 2D.
This was done to learn whether this space’s structure is spatially intermittent (there
are distinct clusters) or continuous, meaning that the space of signatures is stratified
but without distinct gaps. The result showed a stratified structure, so the number of
clusters is somewhat arbitrary. We used the K-means clustering with K = 12 and the
JSD as a distance between signatures.
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Figure 4. Patterns of land cover (left) and landforms (right) in each of 12 landscape types (LTs). These
patterns are formed by 900 LLs randomly selected from a respective LT and organized into 30×30 grid.

Figure 3 shows the resultant map of LTs. The names of LTs in the legend are con-
ceived a posteriori by interpreting LC and LF patterns in each LT. The LTs patterns
are shown in Figure 4. This figure has twelve sections, each section shows a pattern of
LC (left panel) and a pattern of LF (right panel) for an LT as indicated by a numerical
label. These patterns are montages of 900 LLs randomly selected from a given LT and
organized into 30×30 grid.

Examining Figure 4 reveals that there are five LTs (10, 7, 9, 12, and 6) that are
mountainous to a different degree and covered by mosaics of predominantly forest,
predominantly agriculture, or predominantly grassland. There are also four LTs (8, 3,
11, and 1) that are hilly and covered by mosaics of predominantly forest or predom-
inantly agriculture. Finally, there are three LTs (2, 4, and 5) located in plains and
covered by either forest or agriculture, or a forest-agriculture mosaic.

As we have stated in the Introduction, the quality of zones delineation depends on
how similar are patterns’ motifs within a single zone and how dissimilar are patterns’
motifs between different zones. The intra-cluster dissimilarity of an LT is calculated
using the metric, δ, based on an average dissimilarity between all LLs within a zone

δ(LT) =
1

k(k − 1)

∑

i

∑

j 6=i

JSD(LLi,LLj) (2)

where LLi and LLj are local landscapes within a given LT, and k is the number of
LLs in this LT. Smaller values of δ indicate smaller dissimilarities between LLs in the
LT.

The inter-cluster dissimilarity between a given LT and other LTs is calculated using
the metric β based on a “distance” between two clusters, LT1 and LT2 is calculated
using the average linkage (Sokal and Michener 1958).

D(LT1,LT2) =
1

k1k2

k1∑

i=1

k2∑

j=1

JSD(LL1,i,LL2,j) (3)
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Table 1. Statistics of landscape types (LTs) in Europe

zone landscape characterization % LLs mean elev. std. elev. δ β

10 high mts.; cultivated or sparse veg. 5.99 1093 739 0.45 0.81
7 high mts.; forested 6.93 1110 552 0.20 0.81

9 low mts.; forested 9.66 555 356 0.34 0.79
12 low mts.; cultivated 9.87 603 454 0.35 0.78

6 low mts./hills; grass/sparse veg. 6.72 451 424 0.71 0.84
8 hills and plateaus; forested 4.98 275 159 0.34 0.80
3 hills and plateaus; cultivated 8.41 322 266 0.36 0.78

11 hills, plateaus, and plains; cultivated 7.74 183 150 0.30 0.78
1 scattered hills and plains; forest and lakes 6.47 151 136 0.45 0.78

5 plains; forested 12.03 127 65 0.15 0.74
4 plains; cultivated/forest mosaic 7.87 133 134 0.33 0.72
2 plains; cultivated 14.34 138 162 0.11 0.80

Abbreviations: elev. – elevation (meters), std. – standard deviation, δ – inhomogeneity, β – distinc-
tion, mts. – mountains

where k1 and k2 are the numbers of LLs in LT1 and LT2, respectively. The value of
the metric β for a given LT is an average of values of D between this LT and all other
LTs. The larger the values of β, the more distinct the LT is from other LTs.

Table 1 lists statistics of LTs, percentage of total LLs, mean elevation, the standard
deviation of elevation, δ, and β. Note that elevation was not a theme directly used
in the delineation of LTs, values of the mean and standard deviation of elevations in
each LT was calculated a posteriori from a digital elevation model (DEM). Values of
metric β are high and have a small range. This means that LTs are distinct from each
other. Values of metric δ have a large range, from as small as 0.11 for LT 2 to as large
as 0.71 for LT 6. This is in agreement with visual evidence in Figure 4.

LTs characterized by small values of δ (2, 5, and 7) are landscapes with relatively
simple motifs where LC/LF pattern has a scale smaller than the scale we have assumed
for LLs (9 km). In such a case, all LLs in the zone have similar patterns and the
value of δ is small. LTs characterized by moderate values of δ (9, 12, 8, 3, 11, and
4) are landscapes where a pattern of landforms or a pattern of land cover has a
scale comparable or larger than the scale we have assumed for LLs. LLs in such LT
differ in either their land cover patterns or their landform patterns, resulting in a
moderate value of δ. However, together, they form a recognizable pattern. An example
of such a pattern is LT 3, where a single motif of LC (a simple pattern dominated by
an agricultural land) repeats itself throughout the zone, but there are two different
motifs of LF each one repeating itself throughout the zone. Visual inspection reveals
that despite being characterized by moderate values of δ these zones constitute proper
landscape types, with a repeating motif of LF that happens to have a scale larger than
our assumed scale of LL. In this case, LLs divide a single motif into two motifs.

LTs characterized by relatively large values of δ (6, 10, and 1) can be divided into two
groups. In the case of LT 1, patterns of both LC and LF have structures comparable
in size with an LL resulting in a large value of δ, but this LT still forms a cohesive
landscape (see discussion in the previous paragraph). In the case of LT 10, and LT
6, patterns of LF are cohesive; LF pattern in LT 10 has a scale smaller than an LL,
while LF pattern in LT 6 has a scale comparable to a LL. However, patterns of LC
are less cohesive; they depend on geographic location. Most of zone 6 is covered by
grassland, but zone 6 in Scandinavia is covered by bare areas and sparse vegetation.
Similarly, most of zone 10 is covered by agriculture, but some LLs are covered by bare
area. Thus, each of these two zones should be split into two zones.
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5. Comparison to other methods

We compare a map of LTs in Europe constructed using the INCOMA-based method
(hereafter referred to as M1) with maps of LTs constructed using two alternative
methods hereafter referred to as M2 and M3. Method M2 uses COMA to identify and
delineate pattern types in each theme separately. We clustered LLs carrying only LC
or only LF patterns into 6 pattern zones each. The result is two maps, each having
a resolution of 9 km, depicting types of patterns formed by categories of LC, and,
separately, categories of LF. In the next step, these maps are overlaid to combine
patterns of two themes resulting in 36 LTs. This method is a simplification of the
INCOMA method resulting from neglecting all inter-thematic spatial dependencies. To
the best of our knowledge, such a method has never been presented in the literature.
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Figure 5. Comparison of landforms types mapping methods M1, M2, and M3 (panels in columns from left
to right). The top row shows maps with random legends and the bottom row shows maps with interpreted

legends (see main text for details).

Method M3 is an overlay of cell-based maps representing contributing variables.
This method is frequently used in literature, in particular, Sayre et al. (2014) used
it to map ”ecophysiographic” zones over the entire terrestrial landmass and Mücher
et al. (2010) used a variant of such method to map landscape types in Europe. We
resampled LC and LF data to the resolution of 9 km (so M1, M2, and M3 have the
same resolution). Overlaying LC with 9 categories with LF with 17 categories resulted
in the map of LTs in Europe with 130 different LTs present.

Figure 5 shows a comparison of maps obtained by using M1, M2, and M3, respec-
tively. In this figure, we have zoomed the maps to the extent of the Iberian peninsula to
show more details. The figure has six panels organized in three columns (corresponding
to M1, M2, and M3) and two rows (corresponding to random legends and interpreted
legends). To construct an interpreted legend, we combined M2/M3 categories into 12
groups, so the combined spatial extents of categories in a group correspond as best
as possible to a single zone in M1. Categories in a given group were assigned differ-
ent but similar colors roughly corresponding to the hue of the matching M1 category
(see legends in Figure 5). For example, the first five categories in M2 and the first 12
categories in M3 (dark bluish colors) correspond to the first category in M1.
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Comparing maps with random-colored legends (top row) reveals that the M1 map
is the most cohesive and integrated. Maps M2 and M3 are progressively less cohesive
and integrated because they have more, possibly superfluous, categories. Comparing
maps with interpreted legends shows that maps M2 and M3 are in principle capable
of showing the same major placement of LTs in the Iberian peninsula as the map M1
does but only after merging some of their categories. However, such merging needs
guidance by map M1 to be automatic. Without map M1 and without the ability to
calculate values of dissimilarities between landscapes, the merging would have to be
done manually.

6. Discussion

This paper’s main contribution is the introduction of INCOMA – a signature of a multi-
thematic pattern of natural themes that makes possible identification and delineation
of landscape types using a principle of similarity-based aggregation of small local
landscapes into large zones – landscape types. Thus, INCOMA brings together an
interest in landscape classification with unsupervised machine learning methods like
clustering and segmentation; it provides a principled way to make maps of such zones.

The current method of choice for mapping LTs is the map overlay. However, it
is debatable whether zones delineated by the overlay method are indeed landscapes.
This depends on the character of the input data. The commonly used data (land cover,
topography, soil type) consist of variables defined at the cell level, whereas a landscape
type is a variable defined over an areal unit much larger than a single cell. Formally,
it is not correct to define a landscape type in terms of aggregates of cells having the
same categories of variables. For example, in Sayre et al. (2014) the variables are land
cover, landforms, lithology, and climate, all defined at the 250 m cell. The unit of
“landscape”, that Sayre et al. (2014) call an ecophysigraphic unit, is a homogeneous
zone consisting of cells having the same combination of categories of the four variables
– an entity not commonly perceived as a landscape type.

Omernik and Griffith (2014) developed maps of ecoregions over the conterminous
United States. Because they used variables like geology, landforms, soils, climate, and
land cover, technically, their ecoregions are not different from landscapes as defined
in this paper. This work involved manual mapping by a large group of experts from
diverse disciplines. They concluded that ecoregions/landscapes must be mapped based
on patterns of variables rather than values of variables. By such reasoning, zones
delineated by the map overlay method are not landscapes. On the other hand, zones
delineated by INCOMA are indeed landscapes (see Figure 4).

The key parameter in the INCOMA method is the size of the local landscape. This
size must be large enough to encompass a meaningful pattern of variables, but small
enough to serve as a basic unit of aggregation into zones. Given the data we use, the
minimum LL size could be perhaps as small as 3 km×3 km (10×10 cells). In Europe,
LLs larger than 15 km×15 km would be too heterogeneous to lead to useful landscape
types. In pattern-based approach landscape types depend on the size of LL, the larger
the size, the more heterogeneous is the resultant LTs. Thus, the size of LL needs to
be chosen, keeping in mind the resolution of the data and the purpose of mapping.

In our example, there is another important parameter - the number of identified LTs
(equal to the number of clusters in K-means clustering). We used 12 LTs after experi-
mentation with several different choices. In a more comprehensive study (our example
in this paper is only an illustration of INCOMA application), segmentation rather
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then clustering would be used to aggregate LLs (Jasiewicz, Stepinski, and Niesterow-
icz 2018). Resultant segments must be subsequently clustered to get LTs. Because
the number of segments would be much smaller than the number of LLs, it would be
feasible to use a hierarchical clustering (which requires storing a distance matrix in a
computer memory) instead of K-means, which would alleviate the problem of selecting
a “right” number of clusters.

Note that we judged the quality of landscape types delineation by the coherence of
LC and LF patterns within them and by uniqueness of each zone. This is a standard
method when assessing the quality of clustering. If a zone has a coherent pattern
and this pattern changes perceptibly on its boundaries, it represents a recognizable
geographical unit. We have found that the standard assessment, which was developed
for pixels rather than LLs (units of the pattern), is necessary but insufficient to judge
the quality of our zones. This is because the zone may enclose a pattern whose scale
is larger than our assumed scale of a LL. Thus, some zones with moderate values of
metric δ may nevertheless constitute a coherent pattern. This has been the case for
our zones 9, 12, 8, 3, 11, and 4. Therefore, a visual inspection of the zones vis-a-vis
individual data layers is recommended.

There were previous attempts to delineate multi-thematic landscapes manually, e.g.,
Wickham and Norton (1994) or (Omernik and Griffith 2014). Omernik and Griffith
presented a large work of dividing the area of the entire conterminous U.S. into ecore-
gions based on multiple variables, including land cover and landforms. Their definition
of the ecoregion is very similar to our definition of a multi-thematic landscape. Thus,
using our INCOMA method on data for the US, it would be in principle possible to
compare results of automatic and manual delineations.

In our illustrative example, we only used two natural themes, LC and LF, however,
in a comprehensive study, LTs should be determined by a minimum of four themes,
land cover, landforms, soils/lithology, and climate (Mücher et al. 2010; Sayre et al.
2014). Because climate changes on scales larger than other themes, it is not necessary
to include it in the process of LTs delineation (Mücher et al. 2010); LTs can to be
delineated on the basis of the remaining three themes and later subdivided by climatic
zones. The INCOMA can easily accommodate three themes. Recall from Section 3.3
that INCOMA’s size is (C1 + · · ·+Cn)2, where Ck is the length of the legend of theme
k. In our example, this size is (9 + 16)2 = 625, although a large fraction of these
counts is equal to 0. If we add soils theme with say 10 categories the size of INCOMA
increase to 1225, again with a large fraction of these number being equal to 0. We
do not expect the need for INCOMA to encapsulate more than four themes, with the
increase of the number of themes, the zones of LTs become small and thus not very
useful for a majority of applications.

Finally, INCOMA can find application in tasks other than identification and
mapping of landscapes, which also require calculating similarities between multi-
thematic patterns. One such application is content-based search and retrieval in spatial
databases (Sharifi 1999; Terribile et al. 2015). The purpose of search and retrieval is
to find LLs most similar to the query local landscape (LL0). This is achieved by calcu-
lating INCOMA-based dissimilarities between LL0 and each LL in the area of interest
and select LLs characterized by the smallest dissimilarities values as the answer to
the query. Recently, Peng et al. (2019) presented a similarity-based method for query
and retrieval of bi-thematic “local landscapes” consisting of a land cover theme and a
terrain (digital elevation model or DEM) theme. Their purpose was to retrieve similar
Earth images using bi-thematic patterns as proxies for images. INCOMA enables more
general queries based on multi-thematic local landscapes.
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Data and code availability statement

Three global categorical raster datasets used in this study were derived from the follow-
ing resources: http://maps.elie.ucl.ac.be/CCI/viewer/, https://cds.climate.
copernicus.eu/cdsapp#!/dataset/satellite-land-cover, and https://rmgsc.

cr.usgs.gov/outgoing/ecosystems/Global/.
The data that support the findings of this study are available at https://doi.org/

10.6084/m9.figshare.13379228.v1.
The R package allowing to create integrated co-occurrence matrices and integrated

co-occurrence histograms is available at https://github.com/Nowosad/comat. The
R package allowing for identification of landscape types (LTs) is available at https:

//github.com/Nowosad/motif.
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Mücher, C. A., J. A. Klijn, D. M. Wascher, and J. H. Schaminée. 2010. “A new European Land-
scape Classification (LANMAP): A transparent, flexible and user-oriented methodology to
distinguish landscapes.” Ecological indicators 10(1): 87–103.

Netzel, P., and T. F. Stepinski. 2014. “Pattern-based assessment of land cover change on
continental scale with application to NLCD 2001–2006.” IEEE Transactions on Geoscience
and Remote Sensing 53(4): 1773–1781.

Niesterowicz, J., and T. F. Stepinski. 2013. “Regionalization of multi-categorical landscapes
using machine vision methods.” Applied Geography 45: 250–258.

Niesterowicz, J., and T. F. Stepinski. 2016. “On using landscape metrics for landscape simi-
larity search.” Ecological indicators 64: 20–30.

Niesterowicz, J., and T. F. Stepinski. 2017. “Pattern-based, multi-scale segmentation and
regionalization of EOSD land cover.” International journal of Applied Earth Observation
and Geoinformation 62: 192–200.

Niesterowicz, J., T.F. Stepinski, and J. Jasiewicz. 2016. “Unsupervised regionalization of the
United States into landscape pattern types.” International Journal of Geographical Infor-
mation Science 30(7): 1450–1468.

Nowosad, J., T. F. Stepinski, and P. Netzel. 2019. “Global Assessment and Mapping of Changes
in Mesoscale Landscapes: 1992–2015.” International Journal of Applied Earth Observation
and Geoinformation 78: 332–340.

Nowosad, J., and T. GF. Stepinski. 2018. “Global inventory of landscape patterns and latent
variables of landscape spatial configuration.” Ecological Indicators 89: 159–167.

Nowosad, Jakub. 2020. comat: Co-Occurrence Matrices of Spatial Data. R package version
0.8.4, https://nowosad.github.io/comat/.

Nowosad, Jakub. 2021. “Motif: an open-source R tool for pattern-based spatial analysis.”
Landscape Ecology 36: 26–43.

Omernik, J. M., and G. E. Griffith. 2014. “Ecoregions of the Conterminous United States:
Evolution of a Hierarchical Spatial Framework.” Environmental Management 54 (6): 1249–
1266.

O’Neill, R. V., J. R. Krummel, R. H. Gardner, G. Sugihara, B. Jackson, D. L. DeAngelis, B. T.
Milne, et al. 1988. “Indices of Landscape Pattern.” Landscape Ecology 1 (3): 153–162.

Partington, Kevin, and Jeffrey Cardille. 2013. “Uncovering Dominant Land-Cover Patterns
of Quebec: Representative Landscapes, Spatial Clusters, and Fences.” Land 2: 756–773.
http://www.mdpi.com/2073-445X/2/4/756/.

Pebesma, Edzer. 2020. stars: Spatiotemporal Arrays, Raster and Vector Data Cubes. Https://r-
spatial.github.io/stars/, https://github.com/r-spatial/stars/.

Peng, Feifei, Le Wang, Shengyuan Zou, Jing Luo, Shengsheng Gong, and Xiran Li. 2019.
“Content-Based Search of Earth Observation Data Archives Using Open-Access Multitem-
poral Land Cover and Terrain Products.” International Journal of Applied Earth Observa-

15

https://nowosad.github.io/comat/
http://www.mdpi.com/2073-445X/2/4/756/


tion and Geoinformation 81: 13–26.
R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Rubner, Y., J. Puzicha, C. Tomasi, and J. M. Buhmann. 2001. “Empirical Evaluation of

Dissimilarity Measures for Color and Texture.” Computer Vision and Image Understanding
84: 25–43.

Sayre, R., J. Dangermond, C. Frye, R. Vaughan, P. Aniello, S. Breyer, D. Cribbs, et al. 2014.
A new map of global ecological land units – an ecophysiographic stratification approach.
Technical Report. Tech. rep., Washington, DC: Association of American Geographers.

Shannon, C E. 1948. “A Mathematical Theory of Communication.” The Bell System Technical
Journal 27: 55.

Sharifi, Ali. 1999. “Remote Sensing and Decision Support Systems.” In Spatial Statistics for
Remote Sensing, edited by Freek van der Meer, Alfred Stein, Freek Van der Meer, and Ben
Gorte, Vol. 1, 243–260. Dordrecht: Springer Netherlands.

Simensen, T., R. Halvorsen, and L. Erikstad. 2018. “Methods for landscape characterisation
and mapping: A systematic review.” Land use policy 75: 557–569.

Sokal, R. R., and C. Michener. 1958. “A statistical method for evaluating systematic relation-
ships.” Univ. Kansas Sci. Bull. 38: 1409–1438.

Stepinski, T. F., P. Netzel, and J. Jasiewicz. 2013. “LandEx–a GeoWeb tool for query and
retrieval of spatial patterns in land cover datasets.” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 7(1): 257–266.

Terribile, F., A. Agrillo, A. Bonfante, G. Buscemi, M. Colandrea, A. D&amp;apos;Antonio,
R. De Mascellis, et al. 2015. “A Web-Based Spatial Decision Supporting System for Land
Management and Soil Conservation.” Solid Earth 6 (3): 903–928.

Turner, Monica G, and Robert H Gardner. 1991. Quantitative Methods in Landscape Ecologythe
Analysis and Interpretation of Landscape Heterogeneity.

Vadivel, A., Shamik Sural, and A.K. Majumdar. 2007. “An Integrated Color and Intensity
Co-Occurrence Matrix.” Pattern Recognition Letters 28 (8): 974–983.

Wascher, D. M. 2005. European landscape character areas: typologies, cartography and indica-
tors for the assessment of sustainable landscapes (No. 1254). Technical Report. Landscape
Europe.

Wickham, J. D., and D. J. Norton. 1994. “Mapping and analyzing landscape patterns.” Land-
scape Ecology 9 (1): 7–23.

16

https://www.R-project.org/

	Introduction
	Materials
	Methods
	Co-occurrence matrix
	Dissimilarity function
	Integrated Co-occurrence Matrix
	Software

	Identifying and mapping landscape types in Europe
	Comparison to other methods
	Discussion
	Data and code availability statement

